Stable and accurate pressure approximation for unsteady incompressible viscous flow


Journal Article

How to properly specify boundary conditions for pressure is a longstanding problem for the incompressible Navier-Stokes equations with no-slip boundary conditions. An analytical resolution of this issue stems from a recently developed formula for the pressure in terms of the commutator of the Laplacian and Leray projection operators. Here we make use of this formula to (a) improve the accuracy of computing pressure in two kinds of existing time-discrete projection methods implicit in viscosity only, and (b) devise new higher-order accurate time-discrete projection methods that extend a slip-correction idea behind the well-known finite-difference scheme of Kim and Moin. We test these schemes for stability and accuracy using various combinations of C0 finite elements. For all three kinds of time discretization, one can obtain third-order accuracy for both pressure and velocity without a time-step stability restriction of diffusive type. Furthermore, two kinds of projection methods are found stable using piecewise-linear elements for both velocity and pressure. © 2010 Elsevier Inc.

Full Text

Duke Authors

Cited Authors

  • Liu, JG; Liu, J; Pego, RL

Published Date

  • January 1, 2010

Published In

Volume / Issue

  • 229 / 9

Start / End Page

  • 3428 - 3453

Electronic International Standard Serial Number (EISSN)

  • 1090-2716

International Standard Serial Number (ISSN)

  • 0021-9991

Digital Object Identifier (DOI)

  • 10.1016/

Citation Source

  • Scopus