Skip to main content
Journal cover image

The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants.

Publication ,  Journal Article
Sun, T-P
Published in: Current biology : CB
May 2011

Bioactive gibberellins (GAs) are diterpene phytohormones that modulate growth and development throughout the whole life cycle of the flowering plant. Impressive advances have been made in elucidating the GA pathway with the cloning and characterization of genes encoding most GA biosynthesis and catabolism enzymes, GA receptors (GIBBERELLIN INSENSITIVE DWARF1, GID1) and early GA signaling components. Recent biochemical, genetic and structural analyses demonstrate that GA de-represses its signaling pathway by GID1-induced degradation of DELLA proteins, which are master growth repressors, via a ubiquitin-proteasome pathway. Multiple endogenous signals and environmental cues also interact with the GA-GID1-DELLA regulatory module by affecting the expression of GA metabolism genes, and hence GA content and DELLA levels. Importantly, DELLA integrates different signaling activities by direct protein-protein interaction with multiple key regulatory proteins from other pathways. Comparative studies suggest that the functional GA-GID1-DELLA module is highly conserved among vascular plants, but not in the bryophytes. Interestingly, differentiation of the moss Physcomitrella patens is regulated by as yet unidentified ent-kaurene-derived diterpenes, which are distinct from the common active GAs in vascular plants.

Duke Scholars

Published In

Current biology : CB

DOI

EISSN

1879-0445

ISSN

0960-9822

Publication Date

May 2011

Volume

21

Issue

9

Start / End Page

R338 / R345

Related Subject Headings

  • Species Specificity
  • Signal Transduction
  • Receptors, Cell Surface
  • Plants
  • Plant Growth Regulators
  • Gibberellins
  • Developmental Biology
  • Biological Evolution
  • Arabidopsis Proteins
  • 52 Psychology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Sun, T.-P. (2011). The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Current Biology : CB, 21(9), R338–R345. https://doi.org/10.1016/j.cub.2011.02.036
Sun, Tai-Ping. “The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants.Current Biology : CB 21, no. 9 (May 2011): R338–45. https://doi.org/10.1016/j.cub.2011.02.036.
Sun T-P. The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Current biology : CB. 2011 May;21(9):R338–45.
Sun, Tai-Ping. “The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants.Current Biology : CB, vol. 21, no. 9, May 2011, pp. R338–45. Epmc, doi:10.1016/j.cub.2011.02.036.
Sun T-P. The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Current biology : CB. 2011 May;21(9):R338–R345.
Journal cover image

Published In

Current biology : CB

DOI

EISSN

1879-0445

ISSN

0960-9822

Publication Date

May 2011

Volume

21

Issue

9

Start / End Page

R338 / R345

Related Subject Headings

  • Species Specificity
  • Signal Transduction
  • Receptors, Cell Surface
  • Plants
  • Plant Growth Regulators
  • Gibberellins
  • Developmental Biology
  • Biological Evolution
  • Arabidopsis Proteins
  • 52 Psychology