NCIPLOT: a program for plotting non-covalent interaction regions.

Journal Article (Journal Article)

Non-covalent interactions hold the key to understanding many chemical, biological, and technological problems. Describing these non-covalent interactions accurately, including their positions in real space, constitutes a first step in the process of decoupling the complex balance of forces that define non-covalent interactions. Because of the size of macromolecules, the most common approach has been to assign van der Waals interactions (vdW), steric clashes (SC), and hydrogen bonds (HBs) based on pairwise distances between atoms according to their van der Waals radii. We recently developed an alternative perspective, derived from the electronic density: the Non-Covalent Interactions (NCI) index [J. Am. Chem. Soc. 2010, 132, 6498]. This index has the dual advantages of being generally transferable to diverse chemical applications and being very fast to compute, since it can be calculated from promolecular densities. Thus, NCI analysis is applicable to large systems, including proteins and DNA, where analysis of non-covalent interactions is of great potential value. Here, we describe the NCI computational algorithms and their implementation for the analysis and visualization of weak interactions, using both self-consistent fully quantum-mechanical, as well as promolecular, densities. A wide range of options for tuning the range of interactions to be plotted is also presented. To demonstrate the capabilities of our approach, several examples are given from organic, inorganic, solid state, and macromolecular chemistry, including cases where NCI analysis gives insight into unconventional chemical bonding. The NCI code and its manual are available for download at

Full Text

Duke Authors

Cited Authors

  • Contreras-García, J; Johnson, ER; Keinan, S; Chaudret, R; Piquemal, J-P; Beratan, DN; Yang, W

Published Date

  • March 2011

Published In

Volume / Issue

  • 7 / 3

Start / End Page

  • 625 - 632

PubMed ID

  • 21516178

Pubmed Central ID

  • 21516178

Electronic International Standard Serial Number (EISSN)

  • 1549-9626

International Standard Serial Number (ISSN)

  • 1549-9618

Digital Object Identifier (DOI)

  • 10.1021/ct100641a


  • eng