Skip to main content
Journal cover image

Hand and foot pressures in the aye-aye (Daubentonia madagascariensis) reveal novel biomechanical trade-offs required for walking on gracile digits.

Publication ,  Journal Article
Kivell, TL; Schmitt, D; Wunderlich, RE
Published in: The Journal of experimental biology
May 2010

Arboreal animals with prehensile hands must balance the complex demands of bone strength, grasping and manipulation. An informative example of this problem is that of the aye-aye (Daubentonia madagascariensis), a rare lemuriform primate that is unusual in having exceptionally long, gracile fingers specialized for foraging. In addition, they are among the largest primates to engage in head-first descent on arboreal supports, a posture that should increase loads on their gracile digits. We test the hypothesis that aye-ayes will reduce pressure on their digits during locomotion by curling their fingers off the substrate. This hypothesis was tested using simultaneous videographic and pressure analysis of the hand, foot and digits for five adult aye-ayes during horizontal locomotion and during ascent and descent on a 30 degrees instrumented runway. Aye-ayes consistently curled their fingers during locomotion on all slopes. When the digits were in contact with the substrate, pressures were negligible and significantly less than those experienced by the palm or pedal digits. In addition, aye-ayes lifted their hands vertically off the substrate instead of 'toeing-off' and descended head-first at significantly slower speeds than on other slopes. Pressure on the hand increased during head-first descent relative to horizontal locomotion but not as much as the pressure increased on the foot during ascent. This distribution of pressure suggests that aye-ayes shift their weight posteriorly during head-first descent to reduce loads on their gracile fingers. This research demonstrates several novel biomechanical trade-offs to deal with complex functional demands on the mammalian skeleton.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

The Journal of experimental biology

DOI

EISSN

1477-9145

ISSN

0022-0949

Publication Date

May 2010

Volume

213

Issue

Pt 9

Start / End Page

1549 / 1557

Related Subject Headings

  • Walking
  • Strepsirhini
  • Posture
  • Physiology
  • Hand
  • Foot
  • Biomechanical Phenomena
  • Animals
  • 31 Biological sciences
  • 11 Medical and Health Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Kivell, T. L., Schmitt, D., & Wunderlich, R. E. (2010). Hand and foot pressures in the aye-aye (Daubentonia madagascariensis) reveal novel biomechanical trade-offs required for walking on gracile digits. The Journal of Experimental Biology, 213(Pt 9), 1549–1557. https://doi.org/10.1242/jeb.040014
Kivell, Tracy L., Daniel Schmitt, and Roshna E. Wunderlich. “Hand and foot pressures in the aye-aye (Daubentonia madagascariensis) reveal novel biomechanical trade-offs required for walking on gracile digits.The Journal of Experimental Biology 213, no. Pt 9 (May 2010): 1549–57. https://doi.org/10.1242/jeb.040014.
Kivell TL, Schmitt D, Wunderlich RE. Hand and foot pressures in the aye-aye (Daubentonia madagascariensis) reveal novel biomechanical trade-offs required for walking on gracile digits. The Journal of experimental biology. 2010 May;213(Pt 9):1549–57.
Kivell, Tracy L., et al. “Hand and foot pressures in the aye-aye (Daubentonia madagascariensis) reveal novel biomechanical trade-offs required for walking on gracile digits.The Journal of Experimental Biology, vol. 213, no. Pt 9, May 2010, pp. 1549–57. Epmc, doi:10.1242/jeb.040014.
Kivell TL, Schmitt D, Wunderlich RE. Hand and foot pressures in the aye-aye (Daubentonia madagascariensis) reveal novel biomechanical trade-offs required for walking on gracile digits. The Journal of experimental biology. 2010 May;213(Pt 9):1549–1557.
Journal cover image

Published In

The Journal of experimental biology

DOI

EISSN

1477-9145

ISSN

0022-0949

Publication Date

May 2010

Volume

213

Issue

Pt 9

Start / End Page

1549 / 1557

Related Subject Headings

  • Walking
  • Strepsirhini
  • Posture
  • Physiology
  • Hand
  • Foot
  • Biomechanical Phenomena
  • Animals
  • 31 Biological sciences
  • 11 Medical and Health Sciences