(1)H MRS detection of glycine residue of reduced glutathione in vivo.

Journal Article (Journal Article)

Glutathione (GSH) is a powerful antioxidant found inside different kinds of cells, including those of the central nervous system. Detection of GSH in the human brain using (1)H MR spectroscopy is hindered by low concentration and spectral overlap with other metabolites. Previous MRS methods focused mainly on the detection of the cysteine residue (GSH-Cys) via editing schemes. This study focuses on the detection of the glycine residue (GSH-Gly), which is overlapped by glutamate and glutamine (Glx) under physiological pH and temperature. The first goal of the study was to obtain the spectral parameters for characterization of the GSH-Gly signal under physiological conditions. The second goal was to investigate a new method of separating GSH-Gly from Glx in vivo. The characterization of the signal was carried out by utilization of numerical simulations as well as experiments over a wide range of magnetic fields (4.0-14T). The proposed separation scheme utilizes J-difference editing to quantify the Glx contribution to separate it from the GSH-Gly signal. The presented method retains 100% of the GSH-Gly signal. The overall increase in signal to noise ratio of the targeted resonance is calculated to yield a significant SNR improvement compared to previously used methods that target GSH-Cys residue. This allows shorter acquisition times for in vivo human clinical studies.

Full Text

Duke Authors

Cited Authors

  • Kaiser, LG; MarjaĊ„ska, M; Matson, GB; Iltis, I; Bush, SD; Soher, BJ; Mueller, S; Young, K

Published Date

  • February 2010

Published In

Volume / Issue

  • 202 / 2

Start / End Page

  • 259 - 266

PubMed ID

  • 20005139

Pubmed Central ID

  • PMC2818741

Electronic International Standard Serial Number (EISSN)

  • 1096-0856

Digital Object Identifier (DOI)

  • 10.1016/j.jmr.2009.11.013


  • eng

Conference Location

  • United States