Application of k-space energy spectrum analysis for inherent and dynamic B0 mapping and deblurring in spiral imaging.

Journal Article

Spiral imaging is vulnerable to spatial and temporal variations of the amplitude of the static magnetic field (B(0)) caused by susceptibility effects, eddy currents, chemical shifts, subject motion, physiological noise, and system instabilities, resulting in image blurring. Here, a novel off-resonance correction method is proposed to address these issues. A k-space energy spectrum analysis algorithm is first applied to inherently and dynamically generate a B(0) map from the k-space data at each time point, without requiring any additional data acquisition, pulse sequence modification, or phase unwrapping. A simulated phase evolution rewinding algorithm and an automatic residual deblurring algorithm are then used to correct for the blurring caused by both spatial and temporal B(0) variations, resulting in a high spatial and temporal fidelity. This method is validated against conventional B(0) mapping and deblurring methods, and its advantages for dynamic MRI applications are demonstrated in functional MRI studies.

Full Text

Duke Authors

Cited Authors

  • Truong, T-K; Chen, N-K; Song, AW

Published Date

  • October 2010

Published In

Volume / Issue

  • 64 / 4

Start / End Page

  • 1121 - 1127

PubMed ID

  • 20564589

Electronic International Standard Serial Number (EISSN)

  • 1522-2594

Digital Object Identifier (DOI)

  • 10.1002/mrm.22485

Language

  • eng

Conference Location

  • United States