Dynamic gene expression changes precede dioxin-induced liver pathogenesis in medaka fish.

Journal Article (Journal Article)

A major challenge for environmental genomics is linking gene expression to cellular toxicity and morphological alteration. Herein, we address complexities related to hepatic gene expression responses after a single injection of the aryl hydrocarbon receptor (AHR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) and illustrate an initial stress response followed by cytologic and adaptive changes in the teleost fish medaka. Using a custom 175-gene array, we find that overall hepatic gene expression and histological changes are strongly dependent on dose and time. The most pronounced dioxin-induced gene expression changes occurred early and preceded morphologic alteration in the liver. Following a systematic search for putative Ah response elements (AHREs) (5'-CACGCA-3') within 2000 bp upstream of the predicted transcriptional start site, the majority (87%) of genes screened in this study did not contain an AHRE, suggesting that gene expression was not solely dependent on AHRE-mediated transcription. Moreover, in the highest dosage, we observed gene expression changes associated with adaptation that persisted for almost two weeks, including induction of a gene putatively identified as ependymin that may function in hepatic injury repair. These data suggest that the cellular response to dioxin involves both AHRE- and non-AHRE-mediated transcription, and that coupling gene expression profiling with analysis of morphologic pathogenesis is essential for establishing temporal relationships between transcriptional changes, toxicity, and adaptation to hepatic injury.

Full Text

Duke Authors

Cited Authors

  • Volz, DC; Hinton, DE; Law, JM; Kullman, SW

Published Date

  • February 2006

Published In

Volume / Issue

  • 89 / 2

Start / End Page

  • 524 - 534

PubMed ID

  • 16267337

Electronic International Standard Serial Number (EISSN)

  • 1096-0929

International Standard Serial Number (ISSN)

  • 1096-6080

Digital Object Identifier (DOI)

  • 10.1093/toxsci/kfj033


  • eng