Skip to main content
Journal cover image

Metabolic changes in Japanese medaka (Oryzias latipes) during embryogenesis and hypoxia as determined by in vivo 31P NMR.

Publication ,  Journal Article
Pincetich, CA; Viant, MR; Hinton, DE; Tjeerdema, RS
Published in: Comparative biochemistry and physiology. Toxicology & pharmacology : CBP
January 2005

In vivo (31)P nuclear magnetic resonance spectroscopy (NMR) was used to determine phosphometabolite changes in medaka (Oryzias latipes) during embryogenesis and hypoxia. NMR data were acquired using a flow-through NMR tube perfusion system designed to both deliver oxygenated water to embryos and accommodate a hypoxic challenge. Measurements of embryogenesis at 12- and 24-h intervals throughout 8 days of development (n = 3 per time point, 900 embryos per replicate) and during acute hypoxia (n = 6, 900 embryos at Iwamatsu stage 37 per replicate) were performed via NMR, and replicate samples (n = 4, 250 embryos each) were flash frozen for HPLC analysis. The hypoxic challenge experiment consisted of data acquisition with recirculating water (pre-hypoxic control period; 1 h), without recirculating water (hypoxic challenge; 1 h), then again with recirculating water (recovery period; 1.3 h). Concentrations of ATP, phosphocreatine (PCr), orthophosphate (P(i)), phosphomonoesters (PME), phosphodiesters (PDE), and intracellular pH (pH(i)) were determined by NMR, and ATP, ADP, AMP, GTP, GDP, and PCr were also determined via HPLC. During embryogenesis, [ATP] and [PCr] as determined by HPLC increased from 1-day post fertilization (DPF) levels of 0.93+/-0.08 and 2.48+/-0.21 micromol/mg (dry tissue), respectively, to 7.24+/-0.77 and 15.66+/-1.08 micromol/mg, respectively, by day 8. [ATP] and [PCr] measured by both NMR and HPLC fluctuated over 1-3 DPF, then increased significantly (p<0.05) over 3-8 DPF, while [PME] and [PDE] decreased (p<0.05) throughout embryogenesis. NMR and HPLC measurements revealed 1-3, 4-5, and 6-8 DPF as periods of embryogenesis significantly different from each other (p<0.05), and representing important transitions in metabolism and growth. During hypoxic challenge, [ATP] and [PCr] declined (p<0.05), [PME] and [PDE] decreased slightly, and [P(i)] increased (p<0.05). All phosphometabolites returned to pre-hypoxia concentrations during recovery. The pH(i) decreased (p<0.05) from 7.10+/-0.03 to 6.94+/-0.03 as a result of hypoxia, and failed to return to pre-hypoxic levels within the 1.3-h recovery phase. Results demonstrate the utility of in vivo (31)P NMR to detect significant alterations in phosphorylated nucleotides and phosphometabolites at specific developmental stages during medaka development and that late-stage medaka utilize PCr to generate ATP under hypoxic conditions.

Duke Scholars

Published In

Comparative biochemistry and physiology. Toxicology & pharmacology : CBP

DOI

ISSN

1532-0456

Publication Date

January 2005

Volume

140

Issue

1

Start / End Page

103 / 113

Related Subject Headings

  • Toxicology
  • Phosphorus Radioisotopes
  • Oryzias
  • Magnetic Resonance Spectroscopy
  • Hypoxia, Brain
  • Female
  • Energy Metabolism
  • Embryonic Development
  • Animals
  • 3214 Pharmacology and pharmaceutical sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Pincetich, C. A., Viant, M. R., Hinton, D. E., & Tjeerdema, R. S. (2005). Metabolic changes in Japanese medaka (Oryzias latipes) during embryogenesis and hypoxia as determined by in vivo 31P NMR. Comparative Biochemistry and Physiology. Toxicology & Pharmacology : CBP, 140(1), 103–113. https://doi.org/10.1016/j.cca.2005.01.010
Pincetich, Christopher A., Mark R. Viant, David E. Hinton, and Ronald S. Tjeerdema. “Metabolic changes in Japanese medaka (Oryzias latipes) during embryogenesis and hypoxia as determined by in vivo 31P NMR.Comparative Biochemistry and Physiology. Toxicology & Pharmacology : CBP 140, no. 1 (January 2005): 103–13. https://doi.org/10.1016/j.cca.2005.01.010.
Pincetich CA, Viant MR, Hinton DE, Tjeerdema RS. Metabolic changes in Japanese medaka (Oryzias latipes) during embryogenesis and hypoxia as determined by in vivo 31P NMR. Comparative biochemistry and physiology Toxicology & pharmacology : CBP. 2005 Jan;140(1):103–13.
Pincetich, Christopher A., et al. “Metabolic changes in Japanese medaka (Oryzias latipes) during embryogenesis and hypoxia as determined by in vivo 31P NMR.Comparative Biochemistry and Physiology. Toxicology & Pharmacology : CBP, vol. 140, no. 1, Jan. 2005, pp. 103–13. Epmc, doi:10.1016/j.cca.2005.01.010.
Pincetich CA, Viant MR, Hinton DE, Tjeerdema RS. Metabolic changes in Japanese medaka (Oryzias latipes) during embryogenesis and hypoxia as determined by in vivo 31P NMR. Comparative biochemistry and physiology Toxicology & pharmacology : CBP. 2005 Jan;140(1):103–113.
Journal cover image

Published In

Comparative biochemistry and physiology. Toxicology & pharmacology : CBP

DOI

ISSN

1532-0456

Publication Date

January 2005

Volume

140

Issue

1

Start / End Page

103 / 113

Related Subject Headings

  • Toxicology
  • Phosphorus Radioisotopes
  • Oryzias
  • Magnetic Resonance Spectroscopy
  • Hypoxia, Brain
  • Female
  • Energy Metabolism
  • Embryonic Development
  • Animals
  • 3214 Pharmacology and pharmaceutical sciences