The role of protein kinase C in modulation of aqueous humor outflow facility.

Journal Article (Journal Article)

The elevated intraocular pressure that is commonly associated with glaucoma is believed to arise due to impairment of trabecular meshwork (TM) function. Although the TM and Schlemm's canal (SC) comprise the major route for aqueous humor outflow, little is known about the potential signaling mechanisms involved in the regulation of aqueous outflow. Based on knowledge regarding the role of protein kinase C (PKC) in vascular biology, we sought to understand the contribution of the PKC pathway towards outflow function by studying the modulation of contractile and morphological characteristics of TM and SC cells. We investigated the involvement of PKC in regulation of myosin light chain (MLC) phosphorylation, formation of actin stress fibers and integrin-ECM adhesions (focal adhesions) in human TM and SC cells and correlated these changes with aqueous outflow facility measured in an enucleated porcine whole eye perfusion model. Expression and distribution of PKC isoforms (alpha and epsilon ) in TM and SC cells and tissues was confirmed by Western blot and immunohistochemical analysis, respectively. Both, pharmacological activators (phorbol-12-myristate 13-acetate (PMA) and phorbol-12,13-dibutyrate (PDBu)) and inhibitors (staurosporine and GF109203X) of PKC were found to induce changes in cell shape (retraction and rounding up) and cytoskeletal organization in human TM and SC cells. While PMA and PDBu produced an increase in formation of actin stress fibers and focal adhesions and in MLC phosphorylation, PKC inhibitors were observed to induce contrasting effects in these cells. Intriguingly, both PDBU and GF109203X caused increases in aqueous outflow facility in the perfusion model. The PKC inhibitor (GF109203X) increased outflow by 46% while the PKC activator (PDBu) only increased outflow by 27%. These results suggest that PKC might play an important role in modulation of aqueous outflow facility by regulating MLC phosphorylation and thereby, the morphological and cytoskeletal characteristics of TM and SC cells.

Full Text

Duke Authors

Cited Authors

  • Khurana, RN; Deng, P-F; Epstein, DL; Vasantha Rao, P

Published Date

  • January 2003

Published In

Volume / Issue

  • 76 / 1

Start / End Page

  • 39 - 47

PubMed ID

  • 12589774

International Standard Serial Number (ISSN)

  • 0014-4835

Digital Object Identifier (DOI)

  • 10.1016/s0014-4835(02)00255-5


  • eng

Conference Location

  • England