Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO₂.

Journal Article (Journal Article)

The earth's future climate state is highly dependent upon changes in terrestrial C storage in response to rising concentrations of atmospheric CO₂. Here we show that consistently enhanced rates of net primary production (NPP) are sustained by a C-cascade through the root-microbe-soil system; increases in the flux of C belowground under elevated CO₂ stimulated microbial activity, accelerated the rate of soil organic matter decomposition and stimulated tree uptake of N bound to this SOM. This process set into motion a positive feedback maintaining greater C gain under elevated CO₂ as a result of increases in canopy N content and higher photosynthetic N-use efficiency. The ecosystem-level consequence of the enhanced requirement for N and the exchange of plant C for N belowground is the dominance of C storage in tree biomass but the preclusion of a large C sink in the soil.

Full Text

Duke Authors

Cited Authors

  • Drake, JE; Gallet-Budynek, A; Hofmockel, KS; Bernhardt, ES; Billings, SA; Jackson, RB; Johnsen, KS; Lichter, J; McCarthy, HR; McCormack, ML; Moore, DJP; Oren, R; Palmroth, S; Phillips, RP; Pippen, JS; Pritchard, SG; Treseder, KK; Schlesinger, WH; Delucia, EH; Finzi, AC

Published Date

  • April 2011

Published In

Volume / Issue

  • 14 / 4

Start / End Page

  • 349 - 357

PubMed ID

  • 21303437

Electronic International Standard Serial Number (EISSN)

  • 1461-0248

International Standard Serial Number (ISSN)

  • 1461-023X

Digital Object Identifier (DOI)

  • 10.1111/j.1461-0248.2011.01593.x


  • eng