Times to extinction for small populations of large birds.

Published

Journal Article

A major practical problem in conservation biology is to predict the survival times-"lifetimes"-for small populations under alternative proposed management regimes. Examples in the United States include the 'Alala (Hawaiian Crow; Corvus hawaiiensis) and Northern Spotted Owl (Strix occidentalis caurina). To guide such decisions, we analyze counts of all crow, owl, and hawk species in the most complete available data set: counts of bird breeding pairs on 14 European islands censused for 29-66 consecutive years. The data set yielded 129 records for analysis. We define the population ceiling as the highest number of breeding pairs observed from colonization to extinction, within a consecutive series of counts for a given species on a given island. The resulting distributions of population lifetimes as a function of population size prove to be highly skewed: most small populations disappear quickly, but a few last for a long time. Median (i.e., 50th percentile) lifetimes are calculated as only 1-5 yr for hawk, owl, and crow populations with ceilings of one or two breeding pairs. As expected if demographic accidents are the main cause of extinction for small populations, lifetimes rise by a factor of 3-4 for each additional pair up to three pairs. They rise more slowly thereafter. These observations suggest that lifetimes of the 'Alala (now reduced to about three pairs in the wild), and of populations of Northern Spotted Owl in the smallest forest fragments, will be short unless active management is implemented.

Full Text

Duke Authors

Cited Authors

  • Pimm, SL; Diamond, J; Reed, TM; Russell, GJ; Verner, J

Published Date

  • November 1993

Published In

Volume / Issue

  • 90 / 22

Start / End Page

  • 10871 - 10875

PubMed ID

  • 11607439

Pubmed Central ID

  • 11607439

Electronic International Standard Serial Number (EISSN)

  • 1091-6490

International Standard Serial Number (ISSN)

  • 0027-8424

Digital Object Identifier (DOI)

  • 10.1073/pnas.90.22.10871

Language

  • eng