Specific double-stranded RNA interference in undifferentiated mouse embryonic stem cells.


Journal Article

Specific mRNA degradation mediated by double-stranded RNA (dsRNA) interference (RNAi) is a powerful way of suppressing gene expression in plants, nematodes, and fungal, insect, and protozoan systems. However, only a few cases of RNAi have been reported in mammalian systems. Here, we investigated the feasibility of the RNAi strategy in several mammalian cells by using the enhanced green fluorescent protein gene as a target, either by in situ production of dsRNA from transient transfection of a plasmid harboring a 547-bp inverted repeat or by direct transfection of dsRNA made by in vitro transcription. Several mammalian cells including differentiated embryonic stem (ES) cells did not exhibit specific RNAi in transient transfection. This long dsRNA, however, was capable of inducing a sequence-specific RNAi for the episomal and chromosomal target gene in undifferentiated ES cells. dsRNA at 8.3 nM decreased the cognate gene expression up to 70%. However, RNAi activity was not permanent because it was more pronounced in early time points and diminished 5 days after transfection. Thus, undifferentiated ES cells may lack the interferon response, similar to mouse embryos and oocytes. Regardless of their apparent RNAi activity, however, cytoplasmic extracts from mammalian cells produced a small RNA of 21 to 22 nucleotides from the long dsRNA. Our results suggest that mammalian cells may possess RNAi activity but nonspecific activation of the interferon response by longer dsRNA may mask the specific RNAi. The findings offer an opportunity to use dsRNA for inhibition of gene expression in ES cells to study differentiation.

Full Text

Cited Authors

  • Yang, S; Tutton, S; Pierce, E; Yoon, K

Published Date

  • November 2001

Published In

Volume / Issue

  • 21 / 22

Start / End Page

  • 7807 - 7816

PubMed ID

  • 11604515

Pubmed Central ID

  • 11604515

Electronic International Standard Serial Number (EISSN)

  • 1098-5549

International Standard Serial Number (ISSN)

  • 0270-7306

Digital Object Identifier (DOI)

  • 10.1128/MCB.21.22.7807-7816.2001


  • eng