Integrin interactions with immobilized peptides in polyethylene glycol diacrylate hydrogels

This study employs tissue-engineering technologies to evaluate neutrophil interactions with extracellular matrix (ECM)-mimetic peptides. We have used a polyethylene glycol (PEG) diacrylate derivative to form a hydrogel as a biologically inert surface. Covalent attachment of bioactive moieties to the hydrogel makes it bioactive. The goal is to define the mechanisms by which these moieties influence the interactions of neutrophils with this bioactive hydrogel, and thus understand the likely effects of similar ligands in the ECM. The current experiments analyze the interactions of isolated human neutrophils with PEG hydrogels modified with Arg-Gly-Asp-Ser (RGDS), a known ligand for some β1 and β3 integrins, and Thr-Met-Lys-Ile-Ile- Pro-Phe-Asn-Arg-Leu-Thr-Ile-Gly-Gly (TMKIIPFNRLTIGG), a ligand for Mac-1, a β2 integrin. Our results demonstrate that neutrophils, independent of chemotactic stimulation, show little ability to adhere to unmodified PEG hydrogels. However, cell adhesion and spreading are robust on peptide-modified hydrogels. Incorporating distinct bioactive peptides, either alone or in combination, has enabled recognition of differential functions of αvβ3, and β2 integrins on neutrophil adhesion and spreading. Combined interactions result in activity that differs markedly from that seen with either integrin independently engaged. This model allows investigation of specific ligand-induced leukocyte functions and the development of engineered matrices with defined bioactive properties.

Duke Authors

Cited Authors

  • Gonzalez, AL; Gobin, AS; West, JL; McIntire, LV; Smith, CW

Published Date

  • 2004

Published In

Volume / Issue

  • 10 / 11-12

Start / End Page

  • 1775 - 1786

International Standard Serial Number (ISSN)

  • 1076-3279

Citation Source

  • SciVal