Modeling adverse birth outcomes via confirmatory factor quantile regression.

Published

Journal Article

We describe a Bayesian quantile regression model that uses a confirmatory factor structure for part of the design matrix. This model is appropriate when the covariates are indicators of scientifically determined latent factors, and it is these latent factors that analysts seek to include as predictors in the quantile regression. We apply the model to a study of birth weights in which the effects of latent variables representing psychosocial health and actual tobacco usage on the lower quantiles of the response distribution are of interest. The models can be fit using an R package called factorQR.

Full Text

Duke Authors

Cited Authors

  • Burgette, LF; Reiter, JP

Published Date

  • March 2012

Published In

Volume / Issue

  • 68 / 1

Start / End Page

  • 92 - 100

PubMed ID

  • 21689080

Pubmed Central ID

  • 21689080

Electronic International Standard Serial Number (EISSN)

  • 1541-0420

International Standard Serial Number (ISSN)

  • 0006-341X

Digital Object Identifier (DOI)

  • 10.1111/j.1541-0420.2011.01639.x

Language

  • eng