Degree of methylation of transgenes is dependent on gamete of origin.

Published

Journal Article

Data derived from both pronuclear transplantation experiments and classical genetic experiments indicate that the maternal and paternal genetic contributions to the mammalian zygote nucleus do not function equivalently during subsequent development. These observations have been interpreted as resulting from differential 'genome imprinting' during male and female gametogenesis. The molecular mechanism responsible for genome imprinting is unknown, but data gathered to date require that the mechanism fulfill at least four criteria: (1) the imprint must be physically linked to the pronucleus; (2) the imprint must persist through DNA replication and cell division; (3) the mechanism must be capable of affecting gene expression; and (4) the mechanism must be capable of switching the identity of the imprint from one sex to the other in successive generations. One molecular mechanism which could satisfy the first three criteria is differential DNA methylation during gametogenesis itself, or before formation of the zygote nucleus during embryogenesis. We present data indicating that the methylation patterns of exogenous DNA sequences in transgenic mice can be changed by switching their gamete of origin in successive generations. These data suggest that DNA methylation can also satisfy the fourth criterion for an imprinting mechanism.

Full Text

Cited Authors

  • Sapienza, C; Peterson, AC; Rossant, J; Balling, R

Published Date

  • July 1, 1987

Published In

Volume / Issue

  • 328 / 6127

Start / End Page

  • 251 - 254

PubMed ID

  • 3600806

Pubmed Central ID

  • 3600806

Electronic International Standard Serial Number (EISSN)

  • 1476-4687

International Standard Serial Number (ISSN)

  • 0028-0836

Digital Object Identifier (DOI)

  • 10.1038/328251a0

Language

  • eng