DNase I sensitivity QTLs are a major determinant of human expression variation.

Published

Journal Article

The mapping of expression quantitative trait loci (eQTLs) has emerged as an important tool for linking genetic variation to changes in gene regulation. However, it remains difficult to identify the causal variants underlying eQTLs, and little is known about the regulatory mechanisms by which they act. Here we show that genetic variants that modify chromatin accessibility and transcription factor binding are a major mechanism through which genetic variation leads to gene expression differences among humans. We used DNase I sequencing to measure chromatin accessibility in 70 Yoruba lymphoblastoid cell lines, for which genome-wide genotypes and estimates of gene expression levels are also available. We obtained a total of 2.7 billion uniquely mapped DNase I-sequencing (DNase-seq) reads, which allowed us to produce genome-wide maps of chromatin accessibility for each individual. We identified 8,902 locations at which the DNase-seq read depth correlated significantly with genotype at a nearby single nucleotide polymorphism or insertion/deletion (false discovery rate = 10%). We call such variants 'DNase I sensitivity quantitative trait loci' (dsQTLs). We found that dsQTLs are strongly enriched within inferred transcription factor binding sites and are frequently associated with allele-specific changes in transcription factor binding. A substantial fraction (16%) of dsQTLs are also associated with variation in the expression levels of nearby genes (that is, these loci are also classified as eQTLs). Conversely, we estimate that as many as 55% of eQTL single nucleotide polymorphisms are also dsQTLs. Our observations indicate that dsQTLs are highly abundant in the human genome and are likely to be important contributors to phenotypic variation.

Full Text

Duke Authors

Cited Authors

  • Degner, JF; Pai, AA; Pique-Regi, R; Veyrieras, J-B; Gaffney, DJ; Pickrell, JK; De Leon, S; Michelini, K; Lewellen, N; Crawford, GE; Stephens, M; Gilad, Y; Pritchard, JK

Published Date

  • February 5, 2012

Published In

Volume / Issue

  • 482 / 7385

Start / End Page

  • 390 - 394

PubMed ID

  • 22307276

Pubmed Central ID

  • 22307276

Electronic International Standard Serial Number (EISSN)

  • 1476-4687

International Standard Serial Number (ISSN)

  • 0028-0836

Digital Object Identifier (DOI)

  • 10.1038/nature10808

Language

  • eng