Neurocognitive development of risk aversion from early childhood to adulthood


Journal Article

Human adults tend to avoid risk. In behavioral economic studies, risk aversion is manifest as a preference for sure gains over uncertain gains. However, children tend to be less averse to risk than adults. Given that many of the brain regions supporting decision-making under risk do not reach maturity until late adolescence or beyond it is possible that mature risk-averse behavior may emerge from the development of decision-making circuitry. To explore this hypothesis, we tested 5- to 8-year-old children, 14- to 16-year-old adolescents, and young adults in a risky-decision task during functional magnetic resonance imaging (fMRI) data acquisition. To our knowledge, this is the youngest sample of children in an fMRI decision-making task. We found a number of decision-related brain regions to increase in activation with age during decision-making, including areas associated with contextual memory retrieval and the incorporation of prior outcomes into the current decision-making strategy, e.g., insula, hippocampus, and amygdala. Further, children who were more riskaverse showed increased activation during decision-making in ventromedial prefrontal cortex and ventral striatum. Our findings indicate that the emergence of adult levels of risk aversion co-occurs with the recruitment of regions supporting decision-making under risk, including the integration of prior outcomes into current decision-making behavior. This pattern of results suggests that individual differences in the development of risk aversion may reflect differences in the maturation of these neural processes. © 2012 Paulsen, Carter, Platt, Huettel and Brannon.

Full Text

Duke Authors

Cited Authors

  • Paulsen, DJ; Carter, RMK; Platt, ML; Huettel, SA; Brannon, EM

Published Date

  • January 3, 2012

Published In

Start / End Page

  • 1 - 17

Electronic International Standard Serial Number (EISSN)

  • 1662-5161

International Standard Serial Number (ISSN)

  • 1662-5161

Digital Object Identifier (DOI)

  • 10.3389/fnhum.2011.00178

Citation Source

  • Scopus