Efficient multiple acquisitions by Skipped Phase Encoding and Edge Deghosting (SPEED) using shared spatial information.

Published

Journal Article

The fast MRI method of Skipped Phase Encoding and Edge Deghosting (SPEED) is further developed to accelerate multiple acquisitions. In a single acquisition, SPEED first acquires three sparse ghosted edge maps with an undersampling factor of N/3, which are modeled with a double-layer structure and described by three equations with two unknown ghosts, each with a unique ghost order index. By minimizing least-square-error, a pair of ghost order indexes is determined. Based on them, the two corresponding ghosts are resolved, leading to a deghosted image. In this case, three equations are needed to determine the ghost order index, while only two equations are required to resolve the two ghosts. This shows both inefficiency and potential. Multiple acquisitions often contain similar spatial information. The similarities can be used to improve efficiency by sharing the ghost order index among different acquisitions, leading to acceleration factors greater than that achievable with single acquisition.

Full Text

Duke Authors

Cited Authors

  • Chang, Z; Xiang, Q-S; Ji, J; Yin, F-F

Published Date

  • January 2009

Published In

Volume / Issue

  • 61 / 1

Start / End Page

  • 229 - 233

PubMed ID

  • 19097227

Pubmed Central ID

  • 19097227

Electronic International Standard Serial Number (EISSN)

  • 1522-2594

Digital Object Identifier (DOI)

  • 10.1002/mrm.21809

Language

  • eng

Conference Location

  • United States