NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants.

Published

Journal Article

Salicylic acid (SA) is a plant immune signal produced after pathogen challenge to induce systemic acquired resistance. It is the only major plant hormone for which the receptor has not been firmly identified. Systemic acquired resistance in Arabidopsis requires the transcription cofactor nonexpresser of PR genes 1 (NPR1), the degradation of which acts as a molecular switch. Here we show that the NPR1 paralogues NPR3 and NPR4 are SA receptors that bind SA with different affinities. NPR3 and NPR4 function as adaptors of the Cullin 3 ubiquitin E3 ligase to mediate NPR1 degradation in an SA-regulated manner. Accordingly, the Arabidopsis npr3 npr4 double mutant accumulates higher levels of NPR1, and is insensitive to induction of systemic acquired resistance. Moreover, this mutant is defective in pathogen effector-triggered programmed cell death and immunity. Our study reveals the mechanism of SA perception in determining cell death and survival in response to pathogen challenge.

Full Text

Duke Authors

Cited Authors

  • Fu, ZQ; Yan, S; Saleh, A; Wang, W; Ruble, J; Oka, N; Mohan, R; Spoel, SH; Tada, Y; Zheng, N; Dong, X

Published Date

  • May 16, 2012

Published In

Volume / Issue

  • 486 / 7402

Start / End Page

  • 228 - 232

PubMed ID

  • 22699612

Pubmed Central ID

  • 22699612

Electronic International Standard Serial Number (EISSN)

  • 1476-4687

International Standard Serial Number (ISSN)

  • 0028-0836

Digital Object Identifier (DOI)

  • 10.1038/nature11162

Language

  • eng