Intracellular Neural Recording with Pure Carbon Nanotube Probes.

Journal Article (Journal Article)

The computational complexity of the brain depends in part on a neuron's capacity to integrate electrochemical information from vast numbers of synaptic inputs. The measurements of synaptic activity that are crucial for mechanistic understanding of brain function are also challenging, because they require intracellular recording methods to detect and resolve millivolt- scale synaptic potentials. Although glass electrodes are widely used for intracellular recordings, novel electrodes with superior mechanical and electrical properties are desirable, because they could extend intracellular recording methods to challenging environments, including long term recordings in freely behaving animals. Carbon nanotubes (CNTs) can theoretically deliver this advance, but the difficulty of assembling CNTs has limited their application to a coating layer or assembly on a planar substrate, resulting in electrodes that are more suitable for in vivo extracellular recording or extracellular recording from isolated cells. Here we show that a novel, yet remarkably simple, millimeter-long electrode with a sub-micron tip, fabricated from self-entangled pure CNTs can be used to obtain intracellular and extracellular recordings from vertebrate neurons in vitro and in vivo. This fabrication technology provides a new method for assembling intracellular electrodes from CNTs, affording a promising opportunity to harness nanotechnology for neuroscience applications.

Full Text

Duke Authors

Cited Authors

  • Yoon, I; Hamaguchi, K; Borzenets, IV; Finkelstein, G; Mooney, R; Donald, BR

Published Date

  • 2013

Published In

Volume / Issue

  • 8 / 6

Start / End Page

  • e65715 -

PubMed ID

  • 23840357

Pubmed Central ID

  • PMC3686779

Electronic International Standard Serial Number (EISSN)

  • 1932-6203

Digital Object Identifier (DOI)

  • 10.1371/journal.pone.0065715


  • eng

Conference Location

  • United States