Skip to main content
Journal cover image

Elevated CO2 and tree fecundity: The role of tree size, interannual variability, and population heterogeneity

Publication ,  Journal Article
LaDeau, SL; Clark, JS
Published in: Global Change Biology
May 1, 2006

Long-term population effects of changes in atmospheric CO2 will be largely determined by reproductive effort. Our research objectives were to quantify variability in seed production and rate of maturation among individual Pinus taeda L. (Pinaceae) trees growing in elevated CO2 (ambient plus 200 μL L-1) since 1996. Estimating tree fecundity in nature is frustrated by the difficulty of counting seeds from individual trees and the need for long-term data. We have used a hierarchical Bayes approach to model individual tree fecundity, accounting for the complexity of experimentation in a natural setting over multiple years. The study presented here demonstrates large variability in natural fecundity rates and contributes to our understanding of how both interannual variation and population heterogeneity influence elevated CO2 effects. We found that trees growing under elevated CO2 matured earlier and produced more seeds and cones per unit basal area than ambient grown trees. By 2004, trees grown in high CO2 had produced an average 300 more seeds per tree than ambient grown trees. Although there was a trend toward decreasing mean CO2 effect (difference in fecundity between elevated and ambient treatments) over time, the hierarchical analysis indicates that this decrease comes from the emergence of a few highly fecund ambient grown trees by 2002, rather than acclimation or downregulation among the fumigated trees. The most important effect of increased CO2 in forest ecosystems may be the increase in fecundity reported here. Although biomass responses can sometimes be large, the increase in fecundity can have long-term impacts on forest dynamics that transcend the current generation. © 2006 Blackwell Publishing Ltd.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Global Change Biology

DOI

EISSN

1365-2486

ISSN

1354-1013

Publication Date

May 1, 2006

Volume

12

Issue

5

Start / End Page

822 / 833

Related Subject Headings

  • Ecology
  • 41 Environmental sciences
  • 37 Earth sciences
  • 31 Biological sciences
  • 06 Biological Sciences
  • 05 Environmental Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
LaDeau, S. L., & Clark, J. S. (2006). Elevated CO2 and tree fecundity: The role of tree size, interannual variability, and population heterogeneity. Global Change Biology, 12(5), 822–833. https://doi.org/10.1111/j.1365-2486.2006.01137.x
LaDeau, S. L., and J. S. Clark. “Elevated CO2 and tree fecundity: The role of tree size, interannual variability, and population heterogeneity.” Global Change Biology 12, no. 5 (May 1, 2006): 822–33. https://doi.org/10.1111/j.1365-2486.2006.01137.x.
LaDeau, S. L., and J. S. Clark. “Elevated CO2 and tree fecundity: The role of tree size, interannual variability, and population heterogeneity.” Global Change Biology, vol. 12, no. 5, May 2006, pp. 822–33. Scopus, doi:10.1111/j.1365-2486.2006.01137.x.
LaDeau SL, Clark JS. Elevated CO2 and tree fecundity: The role of tree size, interannual variability, and population heterogeneity. Global Change Biology. 2006 May 1;12(5):822–833.
Journal cover image

Published In

Global Change Biology

DOI

EISSN

1365-2486

ISSN

1354-1013

Publication Date

May 1, 2006

Volume

12

Issue

5

Start / End Page

822 / 833

Related Subject Headings

  • Ecology
  • 41 Environmental sciences
  • 37 Earth sciences
  • 31 Biological sciences
  • 06 Biological Sciences
  • 05 Environmental Sciences