Skip to main content

Overcoming data sparseness and parametric constraints in modeling of tree mortality: A new nonparametric Bayesian model

Publication ,  Journal Article
Metcalf, CJE; McMahon, SM; Clark, JS
Published in: Canadian Journal of Forest Research
September 1, 2009

Accurately describing patterns of tree mortality is central to understanding forest dynamics and is important for both management and ecological inference. However, for many tree species, annual survival of most individuals is high, so that mortality is rare and, therefore, difficult to estimate. Furthermore, tree mortality models have potentially complex suites of covariates. Here, we extend traditional and recent approaches to modeling tree mortality and propose a new non-parametric Bayesian method. Our model is constrained to both reflect and distinguish known relationships between mortality and its two key covariates, diameter and diameter increment growth, but it remains sufficiently flexible to capture a wide variety of patterns of mortality across these covariates. Our model also allows incorporation of outside information in the form of priors, so that increased mortality of large trees can always be formally modeled even when data are sparse. We present results for our nonparametric Bayesian mortality model for maple (Acer spp.), holly (Ilex spp.), sweet gum (Liquidambar styraciflua L.), and tulip-poplar (Liriodendron tulipifera L.) populations from North Carolina, USA.

Duke Scholars

Published In

Canadian Journal of Forest Research

DOI

ISSN

0045-5067

Publication Date

September 1, 2009

Volume

39

Issue

9

Start / End Page

1677 / 1687

Related Subject Headings

  • Forestry
  • 41 Environmental sciences
  • 37 Earth sciences
  • 30 Agricultural, veterinary and food sciences
  • 07 Agricultural and Veterinary Sciences
  • 05 Environmental Sciences
  • 04 Earth Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Metcalf, C. J. E., McMahon, S. M., & Clark, J. S. (2009). Overcoming data sparseness and parametric constraints in modeling of tree mortality: A new nonparametric Bayesian model. Canadian Journal of Forest Research, 39(9), 1677–1687. https://doi.org/10.1139/X09-083
Metcalf, C. J. E., S. M. McMahon, and J. S. Clark. “Overcoming data sparseness and parametric constraints in modeling of tree mortality: A new nonparametric Bayesian model.” Canadian Journal of Forest Research 39, no. 9 (September 1, 2009): 1677–87. https://doi.org/10.1139/X09-083.
Metcalf CJE, McMahon SM, Clark JS. Overcoming data sparseness and parametric constraints in modeling of tree mortality: A new nonparametric Bayesian model. Canadian Journal of Forest Research. 2009 Sep 1;39(9):1677–87.
Metcalf, C. J. E., et al. “Overcoming data sparseness and parametric constraints in modeling of tree mortality: A new nonparametric Bayesian model.” Canadian Journal of Forest Research, vol. 39, no. 9, Sept. 2009, pp. 1677–87. Scopus, doi:10.1139/X09-083.
Metcalf CJE, McMahon SM, Clark JS. Overcoming data sparseness and parametric constraints in modeling of tree mortality: A new nonparametric Bayesian model. Canadian Journal of Forest Research. 2009 Sep 1;39(9):1677–1687.

Published In

Canadian Journal of Forest Research

DOI

ISSN

0045-5067

Publication Date

September 1, 2009

Volume

39

Issue

9

Start / End Page

1677 / 1687

Related Subject Headings

  • Forestry
  • 41 Environmental sciences
  • 37 Earth sciences
  • 30 Agricultural, veterinary and food sciences
  • 07 Agricultural and Veterinary Sciences
  • 05 Environmental Sciences
  • 04 Earth Sciences