Individual variability in tree allometry determines light resource allocation in forest ecosystems: a hierarchical Bayesian approach.

Journal Article (Journal Article)

Tree species differences in crown size and shape are often highlighted as key characteristics determining light interception strategies and successional dynamics. The phenotypic plasticity of species in response to light and space availability suggests that intraspecific variability can have potential consequences on light interception and community dynamics. Species crown size varies depending on site characteristics and other factors at the individual level which differ from competition for light and space. These factors, such as individual genetic characteristics, past disturbances or environmental micro-site effects, combine with competition-related phenotypic plasticity to determine the individual variability in crown size. Site and individual variability are typically ignored when considering crown size and light interception by trees, and residual variability is relegated to a residual error term, which is then ignored when studying ecological processes. In the present study, we structured and quantified variability at the species, site, and individual levels for three frequently used tree allometric relations using fixed and random effects in a hierarchical Bayesian framework. We focused on two species: Abies alba (silver fir) and Picea abies (Norway spruce) in nine forest stands of the western Alps. We demonstrated that species had different allometric relations from site to site and that individual variability accounted for a large part of the variation in allometric relations. Using a spatially explicit radiation transmission model on real stands, we showed that individual variability in tree allometry had a substantial impact on light resource allocation in the forest. Individual variability in tree allometry modulates species' light-intercepting ability. It generates heterogeneous light conditions under the canopy, with high light micro-habitats that may promote the regeneration of light-demanding species and slow down successional dynamics.

Full Text

Duke Authors

Cited Authors

  • Vieilledent, G; Courbaud, B; Kunstler, G; Dhôte, J-F; Clark, JS

Published Date

  • July 2010

Published In

Volume / Issue

  • 163 / 3

Start / End Page

  • 759 - 773

PubMed ID

  • 20169451

Electronic International Standard Serial Number (EISSN)

  • 1432-1939

International Standard Serial Number (ISSN)

  • 0029-8549

Digital Object Identifier (DOI)

  • 10.1007/s00442-010-1581-9


  • eng