Cytochrome P4501A (CYP1A) in killifish (Fundulus heteroclitus): heritability of altered expression and relationship to survival in contaminated sediments.

Published

Journal Article

Previous research has shown that killifish (Fundulus heteroclitus) inhabiting a creosote-contaminated site on the Elizabeth River in Virginia exhibit little induction of cytochrome P4501A (CYP1A) protein expression and activity upon exposure to typical CYP1A-inducing chemicals. We characterized the CYP1A response of first, second, and third generation laboratory-raised offspring of feral Elizabeth River killifish to exposure to sediments from the contaminated site as well as the prototypical polycyclic aromatic hydrocarbon (PAH)-type CYP1A inducers beta-naphthoflavone (BNF) and 3-methylcholanthrene (3-MC). The Elizabeth River offspring's responses were compared to those of offspring of killifish from two reference sites (King's Creek, Virginia, and Russell Creek, North Carolina). As with feral Elizabeth River killifish, the first generation embryos and larvae were refractory to CYP1A induction. However, the response observed in 3-year-old first generation adults, as well as with second and third generation fish, was much closer to that observed in reference-site fish. We suggest that the pattern of altered CYP1A response in Elizabeth River killifish, while persistent and heritable for one generation, is mostly nongenetically based. Additionally, we investigated the hypothesis that low CYP1A activity (measured as in ovo EROD activity) would correlate to increased survival in Elizabeth River sediment pore water; this hypothesis was not supported by our results.

Full Text

Duke Authors

Cited Authors

  • Meyer, JN; Nacci, DE; Di Giulio, RT

Published Date

  • July 2002

Published In

Volume / Issue

  • 68 / 1

Start / End Page

  • 69 - 81

PubMed ID

  • 12075112

Pubmed Central ID

  • 12075112

Electronic International Standard Serial Number (EISSN)

  • 1096-0929

International Standard Serial Number (ISSN)

  • 1096-6080

Digital Object Identifier (DOI)

  • 10.1093/toxsci/68.1.69

Language

  • eng