Skip to main content

Mapping of ionomic traits in Mimulus guttatus reveals Mo and Cd QTLs that colocalize with MOT1 homologues.

Publication ,  Journal Article
Lowry, DB; Sheng, CC; Zhu, Z; Juenger, TE; Lahner, B; Salt, DE; Willis, JH
Published in: PloS one
January 2012

Natural variation in the regulation of the accumulation of mineral nutrients and trace elements in plant tissues is crucial to plant metabolism, development, and survival across different habitats. Studies of the genetic basis of natural variation in nutrient metabolism have been facilitated by the development of ionomics. Ionomics is a functional genomic approach for the identification of the genes and gene networks that regulate the elemental composition, or ionome, of an organism. In this study, we evaluated the genetic basis of divergence in elemental composition between an inland annual and a coastal perennial accession of Mimulus guttatus using a recombinant inbred line (RIL) mapping population. Out of 20 elements evaluated, Mo and Cd were the most divergent in accumulation between the two accessions and were highly genetically correlated in the RILs across two replicated experiments. We discovered two major quantitative trait loci (QTL) for Mo accumulation, the largest of which consistently colocalized with a QTL for Cd accumulation. Interestingly, both Mo QTLs also colocalized with the two M. guttatus homologues of MOT1, the only known plant transporter to be involved in natural variation in molybdate uptake.

Duke Scholars

Published In

PloS one

DOI

EISSN

1932-6203

ISSN

1932-6203

Publication Date

January 2012

Volume

7

Issue

1

Start / End Page

e30730

Related Subject Headings

  • Sequence Homology
  • Quantitative Trait Loci
  • Plant Leaves
  • Phylogeny
  • Molybdenum
  • Molecular Sequence Data
  • Mimulus
  • Metals
  • Ions
  • Genome, Plant
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Lowry, D. B., Sheng, C. C., Zhu, Z., Juenger, T. E., Lahner, B., Salt, D. E., & Willis, J. H. (2012). Mapping of ionomic traits in Mimulus guttatus reveals Mo and Cd QTLs that colocalize with MOT1 homologues. PloS One, 7(1), e30730. https://doi.org/10.1371/journal.pone.0030730
Lowry, David B., Calvin C. Sheng, Zhirui Zhu, Thomas E. Juenger, Brett Lahner, David E. Salt, and John H. Willis. “Mapping of ionomic traits in Mimulus guttatus reveals Mo and Cd QTLs that colocalize with MOT1 homologues.PloS One 7, no. 1 (January 2012): e30730. https://doi.org/10.1371/journal.pone.0030730.
Lowry DB, Sheng CC, Zhu Z, Juenger TE, Lahner B, Salt DE, et al. Mapping of ionomic traits in Mimulus guttatus reveals Mo and Cd QTLs that colocalize with MOT1 homologues. PloS one. 2012 Jan;7(1):e30730.
Lowry, David B., et al. “Mapping of ionomic traits in Mimulus guttatus reveals Mo and Cd QTLs that colocalize with MOT1 homologues.PloS One, vol. 7, no. 1, Jan. 2012, p. e30730. Epmc, doi:10.1371/journal.pone.0030730.
Lowry DB, Sheng CC, Zhu Z, Juenger TE, Lahner B, Salt DE, Willis JH. Mapping of ionomic traits in Mimulus guttatus reveals Mo and Cd QTLs that colocalize with MOT1 homologues. PloS one. 2012 Jan;7(1):e30730.

Published In

PloS one

DOI

EISSN

1932-6203

ISSN

1932-6203

Publication Date

January 2012

Volume

7

Issue

1

Start / End Page

e30730

Related Subject Headings

  • Sequence Homology
  • Quantitative Trait Loci
  • Plant Leaves
  • Phylogeny
  • Molybdenum
  • Molecular Sequence Data
  • Mimulus
  • Metals
  • Ions
  • Genome, Plant