Transferrin receptor is necessary for development of erythrocytes and the nervous system.

Published

Journal Article

Plasma iron circulates bound to transferrin (Trf), which solubilizes the ferric ion and attenuates its reactivity. Diferric Trf interacts with cell-surface Trf receptor (Trfr) to undergo receptor-mediated endocytosis into specialized endosomes. Endosomal acidification leads to iron release, and iron is transported out of the endosome through the activity of divalent metal transporter 1 (DMT1, formerly Nramp2), a transmembrane iron transporter that functions only at low pH. Trf and Trfr then return to the cell surface for reuse, completing a highly efficient cycle. Although the Trf cycle is assumed to be the general mechanism for cellular iron uptake, this has not been validated experimentally. Mice with hypotransferrinaemia (hpx) have little or no plasma Trf. They have severe anaemia, indicating that the Trf cycle is essential for iron uptake by erythroid cells. Other hpx tissues, however, are generally normal, and there is a paradoxical increase in intestinal iron absorption and iron storage. To test the hypothesis that the Trf cycle has unique importance for erythropoiesis, we disrupted the Trfr gene in mice. This results in elimination of the Trf cycle, but leaves other Trf functions intact. Mice lacking Trfr have a more severe phenotype than hpx mice, affecting both erythropoiesis and neurologic development. Furthermore, haploinsufficiency for Trfr results in impaired erythroid development and abnormal iron homeostasis.

Full Text

Duke Authors

Cited Authors

  • Levy, JE; Jin, O; Fujiwara, Y; Kuo, F; Andrews, NC

Published Date

  • April 1999

Published In

Volume / Issue

  • 21 / 4

Start / End Page

  • 396 - 399

PubMed ID

  • 10192390

Pubmed Central ID

  • 10192390

Electronic International Standard Serial Number (EISSN)

  • 1546-1718

International Standard Serial Number (ISSN)

  • 1061-4036

Digital Object Identifier (DOI)

  • 10.1038/7727

Language

  • eng