Synthesis of single-output space compactors for scan-based sequential circuits

Published

Journal Article

This paper addresses the problem of space compaction of test responses of combinational and scan-based sequential circuits. In a general circuit, compaction of output space to a single output with zero-aliasing cannot always be achieved by earlier known approaches. In this work, it is shown that given a precomputed test set T, the test responses at the functional outputs of any arbitrary circuit-under-test (CUT) can be compacted to a single periodic output, with guaranteed zero aliasing. All the errors that are produced by T at the outputs of the CUT will also appear at the output of the compactor. The method is independent of the fault model and the structure of the CUT and uses only the knowledge of the test set T and the corresponding fault-free responses. A new concept of distinguishing outputs and a characteristic function is used to design the compactor. The test vectors in T are appropriately ordered to optimize the compactor logic, which to achieve zero-aliasing uses a test pattern counter to designate the sequence of test application and a special code checker. A design procedure is described to synthesize the compactor using logic synthesis tools, and relevant experimental results on hardware overhead for several benchmark circuits are presented. It is further shown that the overhead can be significantly reduced if the constraint of exact zero aliasing is slightly relaxed.

Full Text

Duke Authors

Cited Authors

  • Bhattacharya, BB; Dmitriev, A; Gössel, M; Chakrabarty, K

Published Date

  • October 1, 2002

Published In

Volume / Issue

  • 21 / 10

Start / End Page

  • 1171 - 1179

International Standard Serial Number (ISSN)

  • 0278-0070

Digital Object Identifier (DOI)

  • 10.1109/TCAD.2002.802275

Citation Source

  • Scopus