Fatty liver vulnerability to endotoxin-induced damage despite NF-kappaB induction and inhibited caspase 3 activation.


Journal Article

Fatty livers are sensitive to lipopolysaccharide (LPS) damage. This study tests the hypothesis that this vulnerability occurs because protective, antiapoptotic mechanisms are not upregulated appropriately. Genetically obese, leptin-deficient ob/ob mice, a model for nonalcoholic fatty liver disease, and their lean litter mates were treated with a small dose of LPS. General measures of liver injury, early (i.e., cytochrome c release) and late (i.e., activation of caspase 3) events that occur during hepatocyte apoptosis, and various aspects of the signal transduction pathways that induce nuclear factor-kappaB (NF-kappaB) and several of its antiapoptotic transcriptional targets (e.g., inducible nitric oxide synthase, bfl-1, and bcl-xL) were compared. Within 0.5-6 h after LPS exposure, cytochrome c begins to accumulate in the cytosol of normal livers, and procaspase 3 cleavage increases. Coincident with these events, kinases (e.g., AKT and Erk-1 and -2) that result in the degradation of inhibitor kappa-B are activated; NF-kappaB activity is induced, and NF-kappaB-regulated gene products accumulate. Throughout this period, there is negligible histological evidence of liver damage, and serum alanine aminotransferase values barely increase over baseline values. Although ob/ob livers have significant histological liver injury and 11-fold greater serum alanine aminotransferase values than those of lean mice by 6 h post-LPS, they exhibit greater activation of AKT and Erk, more profound reductions in inhibitor kappa-B, enhanced activation of NF-kappaB, and greater induction of NF-kappaB-regulated genes. Consistent with this heightened antiapoptotic response, increases in cytochrome c and procaspase 3 cleavage products are inhibited. Together with evidence that ob/ob hepatocytes have a reduced ATP content and undergo increased lysis after in vitro exposure to tumor necrosis factor-alpha, these findings suggest that fatty livers are sensitive to LPS damage because of vulnerability to necrosis, rather than because of apoptosis.

Full Text

Duke Authors

Cited Authors

  • Yang, S; Lin, H; Diehl, AM

Published Date

  • August 2001

Published In

Volume / Issue

  • 281 / 2

Start / End Page

  • G382 - G392

PubMed ID

  • 11447019

Pubmed Central ID

  • 11447019

International Standard Serial Number (ISSN)

  • 0193-1857

Digital Object Identifier (DOI)

  • 10.1152/ajpgi.2001.281.2.G382


  • eng

Conference Location

  • United States