Quantitative analysis of Pc 4 localization in mouse lymphoma (LY-R) cells via double-label confocal fluorescence microscopy.

Journal Article (Journal Article)

Photodynamic therapy (PDT) is a novel cancer therapy that uses light-activated drugs (photosensitizers) to destroy tumor tissue. Reactive oxygen species produced during PDT are thought to cause the destruction of tumor tissue. However, the precise mechanism of PDT is not completely understood. To provide insight into the in vitro mechanisms of PDT, we studied the subcellular localization of the photosensitizer HOSiPcOSi(CH3)2-(CH2)3N(CH3)2 (Pc 4) in mouse lymphoma (LY-R) cells using double-label confocal fluorescence microscopy. This technique allowed us to observe the relative distributions of Pc 4 and an organelle-specific dye within the same cell via two, spectrally distinct, fluorescence images. To quantify the localization of Pc 4 within different organelles, linear correlation coefficients from the fluorescence data of Pc 4 and the organelle-specific dyes were calculated. Using this measurement, the subcellular spatial distributions of Pc 4 could be successfully monitored over an 18 h period. At early times (0-1 h) after introduction of Pc 4 to LY-R cells, the dye was found in the mitochondria, lysosomes and Golgi apparatus, as well as other cytoplasmic membranes, but not in the plasma membrane or the nucleus. Over the next 2 h, there was some loss of Pc 4 from the lysosomes as shown by the correlation coefficients. After an additional incubation period of 2 h Pc 4 slowly increased its accumulation in the lysosomes. The highest correlation coefficient (0.65) was for Pc 4 and BODIPY-FL C5 ceramide, which targets the Golgi apparatus, and also binds to other cytoplasmic membranes. The correlation coefficient was also high (0.60) for Pc 4 and a mitochondria-targeting dye (Mitotracker Green FM). Both of these correlation coefficients were higher than that for Pc 4 with the lysosome-targeting dye (Lysotracker Green DND-26). The results suggest that Pc 4 binds preferentially and strongly to mitochondria and Golgi complexes.

Full Text

Duke Authors

Cited Authors

  • Trivedi, NS; Wang, HW; Nieminen, AL; Oleinick, NL; Izatt, JA

Published Date

  • May 2000

Published In

Volume / Issue

  • 71 / 5

Start / End Page

  • 634 - 639

PubMed ID

  • 10818795

Electronic International Standard Serial Number (EISSN)

  • 1751-1097

International Standard Serial Number (ISSN)

  • 0031-8655

Digital Object Identifier (DOI)

  • 10.1562/0031-8655(2000)071<0634:qaopli>2.0.co;2


  • eng