Loss of C. elegans BBS-7 and BBS-8 protein function results in cilia defects and compromised intraflagellar transport.


Journal Article

Bardet-Biedl syndrome (BBS) is a genetically heterogeneous developmental disorder whose molecular basis is largely unknown. Here, we show that mutations in the Caenorhabditis elegans bbs-7 and bbs-8 genes cause structural and functional defects in cilia. C. elegans BBS proteins localize predominantly at the base of cilia, and like proteins involved in intraflagellar transport (IFT), a process necessary for cilia biogenesis and maintenance, move bidirectionally along the ciliary axoneme. Importantly, we demonstrate that BBS-7 and BBS-8 are required for the normal localization/motility of the IFT proteins OSM-5/Polaris and CHE-11, and to a notably lesser extent, CHE-2. We propose that BBS proteins play important, selective roles in the assembly and/or function of IFT particle components. Our findings also suggest that some of the cardinal and secondary symptoms of BBS, such as obesity, diabetes, cardiomyopathy, and learning defects may result from cilia dysfunction.

Full Text

Cited Authors

  • Blacque, OE; Reardon, MJ; Li, C; McCarthy, J; Mahjoub, MR; Ansley, SJ; Badano, JL; Mah, AK; Beales, PL; Davidson, WS; Johnsen, RC; Audeh, M; Plasterk, RHA; Baillie, DL; Katsanis, N; Quarmby, LM; Wicks, SR; Leroux, MR

Published Date

  • July 1, 2004

Published In

Volume / Issue

  • 18 / 13

Start / End Page

  • 1630 - 1642

PubMed ID

  • 15231740

Pubmed Central ID

  • 15231740

International Standard Serial Number (ISSN)

  • 0890-9369

Digital Object Identifier (DOI)

  • 10.1101/gad.1194004


  • eng

Conference Location

  • United States