P2X7 receptor agonists pre- and postcondition the heart against ischemia-reperfusion injury by opening pannexin-1/P2X₇ channels.


Journal Article

Protection of the heart from ischemia-reperfusion injury can be achieved by ischemic preconditioning and ischemic postconditioning. Previous studies revealed that a complex of pannexin-1 with the P2X(7) receptor forms a channel during ischemic preconditioning and ischemic postconditioning that results in the release of endogenous cardioprotectants. ATP binds to P2X(7) receptors, inducing the formation of a channel in association with pannexin-1. We hypothesized that this channel would provide a pathway for the release of these same cardioprotectants. Preconditioning-isolated perfused rat hearts with 0.4 μM ATP preceding 40 min of ischemia minimized infarct size upon subsequent reperfusion (5% of risk area) and resulted in >80% recovery of left ventricular developed pressure. Postconditioning with ATP after ischemia during reperfusion was also protective (6% infarct and 72% recovery of left ventricular developed pressure). Antagonists of both pannexin-1 (carbenoxolone and mefloquine) and P2X(7) receptors (brilliant blue G and A438079) blocked ATP pre- and postconditioning, indicating that ATP protection was elicited via the opening of a pannexin-1/P2X(7) channel. An antagonist of binding of the endogenous cardioprotectant sphingosine 1-phosphate to its G protein-coupled receptor diminished protection by ATP, which is also consistent with an ATP-dependent release of cardioprotectants. Suramin, an antagonist of binding of ATP (and ADP) to P2Y receptors, was without effect on ATP protection. Benzoyl benzoyl-ATP, a more specific P2X(7) agonist, was also a potent pre- and postconditioning agent and sensitive to blockade by pannexin-1/P2X(7) channel antagonists. The data point out for the first time the potential of P2X(7) agonists as cardioprotectants.

Full Text

Cited Authors

  • Vessey, DA; Li, L; Kelley, M

Published Date

  • September 2011

Published In

Volume / Issue

  • 301 / 3

Start / End Page

  • H881 - H887

PubMed ID

  • 21685263

Pubmed Central ID

  • 21685263

Electronic International Standard Serial Number (EISSN)

  • 1522-1539

International Standard Serial Number (ISSN)

  • 0363-6135

Digital Object Identifier (DOI)

  • 10.1152/ajpheart.00305.2011


  • eng