Regression models in clinical studies: determining relationships between predictors and response.

Published

Journal Article (Review)

Multiple regression models are increasingly being applied to clinical studies. Such models are powerful analytic tools that yield valid statistical inferences and make reliable predictions if various assumptions are satisfied. Two types of assumptions made by regression models concern the distribution of the response variable and the nature or shape of the relationship between the predictors and the response. This paper addresses the latter assumption by applying a direct and flexible approach, cubic spline functions, to two widely used models: the logistic regression model for binary responses and the Cox proportional hazards regression model for survival time data.

Full Text

Duke Authors

Cited Authors

  • Harrell, FE; Lee, KL; Pollock, BG

Published Date

  • October 1, 1988

Published In

Volume / Issue

  • 80 / 15

Start / End Page

  • 1198 - 1202

PubMed ID

  • 3047407

Pubmed Central ID

  • 3047407

Electronic International Standard Serial Number (EISSN)

  • 1460-2105

International Standard Serial Number (ISSN)

  • 0027-8874

Digital Object Identifier (DOI)

  • 10.1093/jnci/80.15.1198

Language

  • eng