An efficient forward solver in electrical impedance tomography by spectral element method.

Journal Article (Journal Article)

In electrical impedance tomography (EIT), a forward solver capable of predicting the voltages on electrodes for a given conductivity distribution is essential for reconstruction. The EIT forward solver is normally based on the conventional finite element method (FEM). One of the major problems of three-dimensional (3-D) EIT is its high demand in computing power and memory since high precision is required for obtaining a small secondary field which is typical for a small anomaly. This accuracy requirement is also set by the level of noise in the real data; although currently the noise level is still an issue, future EIT systems should significantly reduce the noise level to be capable of detecting very small anomalies. To accurately simulate the forward solution with the FEM, a mesh with large number of nodes and elements is usually needed. To overcome this problem, we proposed the spectral element method (SEM) for EIT forward problem. With the introduction of SEM, a smaller number of nodes and hence less computational time and memory are needed to achieve the same or better accuracy in the forward solution than the FEM. Numerical results demonstrate the efficiency of the SEM in 3-D EIT simulation.

Full Text

Duke Authors

Cited Authors

  • Lim, KH; Lee, J-H; Ye, G; Liu, QH

Published Date

  • August 2006

Published In

Volume / Issue

  • 25 / 8

Start / End Page

  • 1044 - 1051

PubMed ID

  • 16894997

Electronic International Standard Serial Number (EISSN)

  • 1558-254X

International Standard Serial Number (ISSN)

  • 0278-0062

Digital Object Identifier (DOI)

  • 10.1109/tmi.2006.876143

Language

  • eng