Neurotensin-induced dopamine release in vivo and in vitro from substantia nigra and nucleus caudate.

Journal Article (Journal Article)

We compared the dopamine (DA) releasing effects of neurotensin (NT) from cell bodies (substantia nigra) and nerve terminals (nucleus caudate). In rats implanted with push-pull cannula, NT induced DA release from substantia nigra and nucleus caudate. NT was more potent in releasing DA from the substantia nigra than from the nucleus caudate (EC50%, 1.1 microM in substantia nigra and 9.8 microM in nucleus caudate). In vitro, in superfused rabbit brain slices, NT enhanced the depolarization-evoked release of DA and exerted a direct releasing effect. The latter was greater in the substantia nigra, and the former in the nucleus caudate. The direct releasing effect of NT was not inhibited, but enhanced by nomifensine (3 microM). Sulpiride, a D2 DA receptor antagonist, failed to modify NT-induced DA release; in addition, NT did not affect the inhibition of DA and acetylcholine release produced by LY-171555, a D2 DA agonist. In both the substantia nigra and the nucleus caudate, desensitization to the releasing effect of NT was observed, either after 2.5, 5, or 10 min of exposure to the peptide. A synergistic interaction on DA release was observed between NT and potassium (K+), and between NT and electrical stimulation. Greater synergism was observed with high extracellular K+. Pretreatment of striatal slices with 15 mM K+ produced a 9-fold enhancement of NT-induced DA release. When K+ (25 mM, 2 min) was given together with NT there was a 2- to 3-fold increase in DA release compared to the release evoked by K+ in the absence of NT.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text

Duke Authors

Cited Authors

  • Faggin, BM; Zubieta, JK; Rezvani, AH; Cubeddu, LX

Published Date

  • February 1990

Published In

Volume / Issue

  • 252 / 2

Start / End Page

  • 817 - 825

PubMed ID

  • 2138224

International Standard Serial Number (ISSN)

  • 0022-3565


  • eng

Conference Location

  • United States