Acute sarin exposure causes differential regulation of choline acetyltransferase, acetylcholinesterase, and acetylcholine receptors in the central nervous system of the rat.


Journal Article

Acute neurotoxic effects of sarin (O:-isopropylmethylphosphonoflouridate) in male Sprague-Dawley rats were studied. The animals were treated with intramuscular (im) injections of either 1 x LD(50) (100 microg/kg), and sacrificed at 0. 5, 1, 3, 6, 15, or 20 h after treatment, or with im injections of either 0.01, 0.1, 0.5, or 1 x LD(50) and sacrificed 15 h after treatment. Plasma butyrylcholinesterase (BChE) and brain regional acetylcholinesterase (AChE) were inhibited (45-55%) by 30 min after the LD(50) dose. BChE in the plasma and AChE in cortex, brainstem, midbrain, and cerebellum remained inhibited for up to 20 h following a single LD(50) treatment. No inhibition in plasma BChE activity was observed 20 h after treatment with doses lower than the LD(50) dose. Midbrain and brainstem seem to be most responsive to sarin treatment at lower doses, as these regions exhibited inhibition (approximately 49% and 10%, respectively) in AChE activity following 0.1 x LD(50) treatment, after 20 h. Choline acetyltransferase (ChAT) activity was increased in cortex, brainstem, and midbrain 6 h after LD(50) treatment, and the elevated enzyme activity persisted up to 20 h after treatment. Cortex ChAT activity was significantly increased following a 0.1 x LD(50) dose, whereas brainstem and midbrain did not show any effect at lower doses. Treatment with an LD(50) dose caused a biphasic response in cortical nicotinic acetylcholine receptor (nAChR) and muscarinic acetylcholine receptor (m2-mAChR) ligand binding, using [(3)H]cytisine and [(3)H]AFDX-384 as ligands for nAChR and mAChR, respectively. Decreases at 1 and 3 h and consistent increases at 6, 15, and 20 h in nAChR and m2-mAChR were observed following a single LD(50) dose. The increase in nAChR ligand binding densities was much more pronounced than in mAChR. These results suggest that a single exposure of sarin, ranging from 0.1 to 1 x LD(50), modulates the cholinergic pathways differently and thereby causes dysregulation in excitatory neurotransmission.

Full Text

Duke Authors

Cited Authors

  • Khan, WA; Dechkovskaia, AM; Herrick, EA; Jones, KH; Abou-Donia, MB

Published Date

  • September 2000

Published In

Volume / Issue

  • 57 / 1

Start / End Page

  • 112 - 120

PubMed ID

  • 10966517

Pubmed Central ID

  • 10966517

International Standard Serial Number (ISSN)

  • 1096-6080

Digital Object Identifier (DOI)

  • 10.1093/toxsci/57.1.112


  • eng

Conference Location

  • United States