Range searching on uncertain data

Published

Journal Article

Querying uncertain data has emerged as an important problem in data management due to the imprecise nature of many measurement data. In this article, we study answering range queries over uncertain data. Specifically, we are given a collection P of n uncertain points in ℝ, each represented by its one-dimensional probability density function (pdf). The goal is to build a data structure on P such that, given a query interval I and a probability threshold τ , we can quickly report all points of P that lie in I with probability at least τ . We present various structures with linear or near-linear space and (poly)logarithmic query time. Our structures support pdf's that are either histograms or more complex ones such as Gaussian or piecewise algebraic. © 2012 ACM.

Full Text

Duke Authors

Cited Authors

  • Agarwal, PK; Cheng, SW; Yi, K

Published Date

  • September 1, 2012

Published In

Volume / Issue

  • 8 / 4

Electronic International Standard Serial Number (EISSN)

  • 1549-6333

International Standard Serial Number (ISSN)

  • 1549-6325

Digital Object Identifier (DOI)

  • 10.1145/2344422.2344433

Citation Source

  • Scopus