Practical methods for shape fitting and kinetic data structures using core sets

Journal Article

The notion of ε-kernel was introduced by Agarwal et al. to set up a unified framework for computing various extent measures of a point set P approximately. Roughly speaking, a subset Q ⊆ P is an ε-kernel of P if for every slab W containing Q, the expanded slab (1 + ε)W contains P. They illustrated the significance of an ε-kernel by showing that it yields approximation algorithms for a wide range of problems. We present a simpler and more practical algorithm for computing the ε-kernel of a set P of points in ℝd. We demonstrate the practicality of our algorithm by showing its empirical performance on various inputs. We then describe an incremental algorithm for fitting various shapes and use the ideas of our algorithm for computing ε-kernels to analyze the performance of this algorithm. We illustrate the versatility and practicality of this technique by implementing approximation algorithms for minimum enclosing cylinder, minimum-volume bounding box, and minimum-width annulus. Finally, we show that ε-kernels can be effectively used to expedite the algorithms for maintaining extents of moving points.

Full Text

Duke Authors

Cited Authors

  • Yu, H; Agarwal, PK; Poreddy, R; Varadarajan, KR

Published Date

  • January 1, 2004

Published In

  • Proceedings of the Annual Symposium on Computational Geometry

Start / End Page

  • 263 - 272

Digital Object Identifier (DOI)

  • 10.1145/997817.997858

Citation Source

  • Scopus