PDGF-BB, IGF-I and mechanical load stimulate DNA synthesis in avian tendon fibroblasts in vitro.

Published

Journal Article

Resident cells in the surface epitenon and internal compartment of flexor tendons are subjected to cyclic mechanical load as muscle contracts to move limbs or digits. Tendons are largely tensile load bearing tissues and are highly matrix intensive with nondividing cells providing maintenance functions. However, when an injury occurs, tendon cells are stimulated to divide by activated endogenous growth factors and those from platelets and plasma. We hypothesize that tendon cells detect mechanical load signals but do not interpret such signals as mitogenic unless an active growth factor is present. We have used an in vitro mechanical load model, application of cyclic strain to cells cultured on flexible bottomed culture plates, to test the hypothesis that tendon cells require platelet-derived growth factor (PDGF-BB) and insulin-like growth factor-I (IGF-I) in addition to mechanical load to stimulate DNA synthesis. In addition, we demonstrate that in avian tendon cells, load and growth factors stimulate phosphorylation of tyrosine residues in multiple proteins, including pp60src, a protein kinase that phosphorylates receptor protein tyrosine kinases. A lack of mitogenic responsiveness to mechanical load alone by tendon cells may be a characteristic of a regulatory pathway that modulates cell division.

Full Text

Duke Authors

Cited Authors

  • Banes, AJ; Tsuzaki, M; Hu, P; Brigman, B; Brown, T; Almekinders, L; Lawrence, WT; Fischer, T

Published Date

  • December 1995

Published In

Volume / Issue

  • 28 / 12

Start / End Page

  • 1505 - 1513

PubMed ID

  • 8666590

Pubmed Central ID

  • 8666590

International Standard Serial Number (ISSN)

  • 0021-9290

Language

  • eng

Conference Location

  • United States