A methodology for utilization of predictive genomic signatures in FFPE samples.

Published online

Journal Article

BACKGROUND: Gene expression signatures developed to measure the activity of oncogenic signaling pathways have been used to dissect the heterogeneity of tumor samples and to predict sensitivity to various cancer drugs that target components of the relevant pathways, thus potentially identifying therapeutic options for subgroups of patients. To facilitate broad use, including in a clinical setting, the ability to generate data from formalin-fixed, paraffin-embedded (FFPE) tissues is essential. METHODS: Patterns of pathway activity in matched fresh-frozen and FFPE xenograft tumor samples were generated using the MessageAmp Premier methodology in combination with assays using Affymetrix arrays. Results generated were compared with those obtained from fresh-frozen samples using a standard Affymetrix assay. In addition, gene expression data from patient matched fresh-frozen and FFPE melanomas were also utilized to evaluate the consistency of predictions of oncogenic signaling pathway status. RESULTS: Significant correlation was observed between pathway activity predictions from paired fresh-frozen and FFPE xenograft tumor samples. In addition, significant concordance of pathway activity predictions was also observed between patient matched fresh-frozen and FFPE melanomas. CONCLUSIONS: Reliable and consistent predictions of oncogenic pathway activities can be obtained from FFPE tumor tissue samples. The ability to reliably utilize FFPE patient tumor tissue samples for genomic analyses will lead to a better understanding of the biology of disease progression and, in the clinical setting, will provide tools to guide the choice of therapeutics to those most likely to be effective in treating a patient's disease.

Full Text

Duke Authors

Cited Authors

  • Freedman, JA; Augustine, CK; Selim, AM; Holshausen, KC; Wei, Z; Tsamis, KA; Hsu, DS; Dressman, HK; Barry, WT; Tyler, DS; Nevins, JR

Published Date

  • July 11, 2011

Published In

Volume / Issue

  • 4 /

Start / End Page

  • 58 -

PubMed ID

  • 21745407

Electronic International Standard Serial Number (EISSN)

  • 1755-8794

Digital Object Identifier (DOI)

  • 10.1186/1755-8794-4-58

Language

  • eng

Conference Location

  • England