Genetic control of single lumen formation in the zebrafish gut.

Journal Article

Most organs consist of networks of interconnected tubes that serve as conduits to transport fluid and cells and act as physiological barriers between compartments. Biological tubes are assembled through very diverse developmental processes that generate structures of different shapes and sizes. Nevertheless, all biological tubes invariably possess one single lumen. The mechanisms responsible for single lumen specification are not known. Here we show that zebrafish mutants for the MODY5 and familial GCKD gene tcf2 (also known as vhnf1) fail to specify a single lumen in their gut tube and instead develop multiple lumens. We show that Tcf2 controls single lumen formation by regulating claudin15 and Na+/K+-ATPase expression. Our in vivo and in vitro results indicate that Claudin15 functions in paracellular ion transport to specify single lumen formation. This work shows that single lumen formation is genetically controlled and appears to be driven by the accumulation of fluid.

Full Text

Duke Authors

Cited Authors

  • Bagnat, M; Cheung, ID; Mostov, KE; Stainier, DYR

Published Date

  • August 2007

Published In

Volume / Issue

  • 9 / 8

Start / End Page

  • 954 - 960

PubMed ID

  • 17632505

International Standard Serial Number (ISSN)

  • 1465-7392

Digital Object Identifier (DOI)

  • 10.1038/ncb1621

Language

  • eng

Conference Location

  • England