Viscoelastic and failure properties of spine ligament collagen fascicles.

Journal Article (Journal Article)

The microstructural volume fractions, orientations, and interactions among components vary widely for different ligament types. If these variations are understood, however, it is conceivable to develop a general ligament model that is based on microstructural properties. This paper presents a part of a much larger effort needed to develop such a model. Viscoelastic and failure properties of porcine posterior longitudinal ligament (PLL) collagen fascicles were determined. A series of subfailure and failure tests were performed at fast and slow strain rates on isolated collagen fascicles from porcine lumbar spine PLLs. A finite strain quasi-linear viscoelastic model was used to fit the fascicle experimental data. There was a significant strain rate effect in fascicle failure strain (P < 0.05), but not in failure force or failure stress. The corresponding average fast-rate and slow-rate failure strains were 0.098 ± 0.062 and 0.209 ± 0.081. The average failure force for combined fast and slow rates was 2.25 ± 1.17 N. The viscoelastic and failure properties in this paper were used to develop a microstructural ligament failure model that will be published in a subsequent paper.

Full Text

Duke Authors

Cited Authors

  • Lucas, SR; Bass, CR; Crandall, JR; Kent, RW; Shen, FH; Salzar, RS

Published Date

  • December 2009

Published In

Volume / Issue

  • 8 / 6

Start / End Page

  • 487 - 498

PubMed ID

  • 19308471

Electronic International Standard Serial Number (EISSN)

  • 1617-7940

International Standard Serial Number (ISSN)

  • 1617-7959

Digital Object Identifier (DOI)

  • 10.1007/s10237-009-0152-7


  • eng