Medium-modified jets and initial state fluctuations as sources of charge correlations measured at energies available at the BNL Relativistic Heavy Ion Collider (RHIC)


Journal Article

We investigate the contribution of medium-modified jets and initial state fluctuations to the asymmetry in charged-particle production with respect to the reaction plane. This asymmetry has been suggested as a compelling signature for the chiral magnetic effect in QCD and makes the study of conventional scenarios for the creation of such charged-particle multiplicity fluctuations a timely endeavor. The different path-length combinations of jets through the medium in noncentral heavy ion collisions result in finite correlations of like and different charged particles emitted in the different hemispheres. Our calculation is based on the combination of jet events from Yet another Jet Energy-Loss Model (YaJEM) and a bulk-medium evolution. It is found that the jet production probabilities are too small to observe this effect. The influence of initial state fluctuations on this observable is explored by using an event-by-event (3+1)-dimensional hybrid approach that is based on Ultra-relativistic Quantum Molecular Dynamics (UrQMD) with an ideal hydrodynamic evolution. In this calculation, momentum conservation and elliptic flow are explicitly taken into account. The asymmetries in the initial state are translated to a final state momentum asymmetry by the hydrodynamic flow profile. Dependent on the size of the initial state fluctuations, the resulting charged-particle asymmetries are in qualitative agreement with the preliminary STAR (solenoid tracker at the Relativistic Heavy Ion Collider) results. The multiparticle correlation as proposed by the PHENIX Collaboration can, in principle, be used to disentangle the different contributions, however, in practice, is affected substantially by the procedure to subtract trivial resonance decay contributions. © 2011 American Physical Society.

Full Text

Duke Authors

Cited Authors

  • Petersen, H; Renk, T; Bass, SA

Published Date

  • January 31, 2011

Published In

Volume / Issue

  • 83 / 1

Electronic International Standard Serial Number (EISSN)

  • 1089-490X

International Standard Serial Number (ISSN)

  • 0556-2813

Digital Object Identifier (DOI)

  • 10.1103/PhysRevC.83.014916

Citation Source

  • Scopus