Tetrahydrobiopterin rapidly reduces the SOD mimic Mn(III) ortho-tetrakis(N-ethylpyridinium-2-yl)porphyrin.

Journal Article (Journal Article)

Mn(III) ortho-tetrakis(N-ethylpyridinium-2-yl)porphyrin (Mn(III)TE-2-PyP(5+)) effectively scavenges reactive oxygen and nitrogen species in vitro, and protects in vivo, in different rodent models of oxidative stress injuries. Further, Mn(III)TE-2-PyP(5+) was shown to be readily reduced by cellular reductants such as ascorbic acid and glutathione. We now show that tetrahydrobiopterin (BH(4)) is also able to reduce the metal center. Under anaerobic conditions, in phosphate-buffered saline (pH 7.4) at 25 +/- 0.1 degrees C, reduction of Mn(III)TE-2-PyP(5+) occurs through two reaction steps with rate constants k(1) = 1.0 x 10(4) M(-1) s(-1) and k(2) = 1.5 x 10(3) M(-1) s(-1). We ascribe these steps to the formation of tetrahydrobiopterin radical (BH(4)(.+)) (k(1)) that then undergoes oxidation to 6,7-dihydro-8H-biopterin (k(2)), which upon rearrangement gives rise to 7,8-dihydrobiopterin (7,8-BH(2)). Under aerobic conditions, Mn(III)TE-2-PyP(5+) catalytically oxidizes BH(4). This is also true for its longer chain alkyl analog, Mn(III) ortho-tetrakis(N-n-octylpyridinium-2-yl)porphyrin. The reduced Mn(II) porphyrin cannot be oxidized by 7,8-BH(2) or by l-sepiapterin. The data are discussed with regard to the possible impact of the interaction of Mn(III)TE-2-PyP(5+) with BH(4) on endothelial cell proliferation and hence on tumor antiangiogenesis via inhibition of nitric oxide synthase.

Full Text

Duke Authors

Cited Authors

  • Batinić-Haberle, I; Spasojević, I; Fridovich, I

Published Date

  • August 1, 2004

Published In

Volume / Issue

  • 37 / 3

Start / End Page

  • 367 - 374

PubMed ID

  • 15223070

International Standard Serial Number (ISSN)

  • 0891-5849

Digital Object Identifier (DOI)

  • 10.1016/j.freeradbiomed.2004.04.041

Language

  • eng

Conference Location

  • United States