New class of potent catalysts of O2.-dismutation. Mn(III) ortho-methoxyethylpyridyl- and di-ortho-methoxyethylimidazolylporphyrins.

Journal Article (Journal Article)

Three new Mn(III) porphyrin catalysts of O2.-dismutation (superoxide dismutase mimics), bearing ether oxygen atoms within their side chains, were synthesized and characterized: Mn(III) 5,10,15,20-tetrakis[N-(2-methoxyethyl)pyridinium-2-yl]porphyrin (MnTMOE-2-PyP(5+)), Mn(III)5,10,15,20-tetrakis[N-methyl-N'-(2-methoxyethyl)imidazolium-2-yl]porphyrin (MnTM,MOE-2-ImP(5+)) and Mn(III) 5,10,15,20-tetrakis[N,N'-di(2-methoxyethyl)imidazolium-2-yl]porphyrin (MnTDMOE-2-ImP(5+)). Their catalytic rate constants for O2.-dismutation (disproportionation) and the related metal-centered redox potentials vs. NHE are: log k(cat)= 8.04 (E(1/2)=+251 mV) for MnTMOE-2-PyP(5+), log k(cat)= 7.98 (E(1/2)=+356 mV) for MnTM,MOE-2-ImP(5+) and log k(cat)= 7.59 (E(1/2)=+365 mV) for MnTDMOE-2-ImP(5+). The new porphyrins were compared to the previously described SOD mimics Mn(III) 5,10,15,20-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP(5+)), Mn(III) 5,10,15,20-tetrakis(N-n-butylpyridinium-2-yl)porphyrin (MnTnBu-2-PyP(5+)) and Mn(III) 5,10,15,20-tetrakis(N,N'-diethylimidazolium-2-yl)porphyrin (MnTDE-2-ImP(5+)). MnTMOE-2-PyP(5+) has side chains of the same length and the same E(1/2), as MnTnBu-2-PyP(5+)(k(cat)= 7.25, E(1/2)=+ 254 mV), yet it is 6-fold more potent a catalyst of O2.-dismutation , presumably due to the presence of the ether oxygen. The log k(cat)vs. E(1/2) relationship for all Mn porphyrin-based SOD mimics thus far studied is discussed. None of the new compounds were toxic to Escherichia coli in the concentration range studied (up to 30 microM), and protected SOD-deficient E. coli in a concentration-dependent manner. At 3 microM levels, the MnTDMOE-2-ImP(5+), bearing an oxygen atom within each of the eight side chains, was the most effective and offered much higher protection than MnTE-2-PyP(5+), while MnTDE-2-ImP(5+) was of very low efficacy.

Full Text

Duke Authors

Cited Authors

  • Batinić-Haberle, I; Spasojević, I; Stevens, RD; Hambright, P; Neta, P; Okado-Matsumoto, A; Fridovich, I

Published Date

  • June 7, 2004

Published In

Start / End Page

  • 1696 - 1702

PubMed ID

  • 15252564

International Standard Serial Number (ISSN)

  • 1477-9226

Digital Object Identifier (DOI)

  • 10.1039/b400818a


  • eng

Conference Location

  • England