Electrostatic contribution in the catalysis of O2*- dismutation by superoxide dismutase mimics. MnIIITE-2-PyP5+ versus MnIIIBr8T-2-PyP+.

Journal Article (Journal Article)

The Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin (Mn(III)TE-2-PyP(5+)) is a potent superoxide dismutase (SOD) mimic in vitro and was beneficial in rodent models of oxidative stress pathologies. Its high activity has been ascribed to both the favorable redox potential of its metal center and to the electrostatic facilitation assured by the four positive charges encircling the metal center. Its comparison with the non-alkylated, singly charged analogue Mn(III) beta-octabromo meso-tetrakis(2-pyridyl)porphyrin (Mn(III)Br(8)T-2-PyP(+)) enabled us to evaluate the electrostatic contribution to the catalysis of O(2)() dismutation. Both compounds exhibit nearly identical metal-centered redox potential for Mn(III)/Mn(II) redox couple: +228 mV for Mn(III)TE-2-PyP(5+) and +219 mV versus NHE for Mn(III)Br(8)T-2-PyP(+). The eight electron-withdrawing beta pyrrolic bromines contribute equally to the redox properties of the parent Mn(III)T-2-PyP(+) as do four quaternized cationic meso ortho pyridyl nitrogens. However, the SOD-like activity of the highly charged Mn(III)TE-2-PyP(5+) is >100-fold higher (log k(cat) = 7.76) than that of the singly charged Mn(III)Br(8)T-2-PyP(+) (log k(cat) = 5.63). The kinetic salt effect showed that the catalytic rate constants of the Mn(III)TE-2-PyP(5+) and of its methyl analogue, Mn(III)TM-2-PyP(5+), are exactly 5-fold more sensitive to ionic strength than is the k(cat) of Mn(III)Br(8)T-2-PyP(+), which parallels the charge ratio of these compounds. Interestingly, only a small effect of ionic strength on the rate constant was found in the case of penta-charged para (Mn(III)TM-4-PyP(5+)) and meta isomers (Mn(III)TM-3-PyP(5+)), indicating that the placement of the positive charges in the close proximity of the metal center (ortho position) is essential for the electrostatic facilitation of O(2)() dismutation.

Full Text

Duke Authors

Cited Authors

  • Spasojevic, I; Batinic-Haberle, I; Reboucas, JS; Idemori, YM; Fridovich, I

Published Date

  • February 28, 2003

Published In

Volume / Issue

  • 278 / 9

Start / End Page

  • 6831 - 6837

PubMed ID

  • 12475974

International Standard Serial Number (ISSN)

  • 0021-9258

Digital Object Identifier (DOI)

  • 10.1074/jbc.M211346200


  • eng

Conference Location

  • United States