Fluid flow and heat transfer in vascularized cooling plates

In this study, the hydrodynamic and thermal characteristics of new vascular designs for the volumetric bathing of the smart structures were investigated numerically by addressing three-dimensional continuity, momentum, and energy conservation as a conjugate heat flow phenomenon. The numerical work covered the Reynolds number range of 50-2000, cooling channels volume fraction of 0.02, pressure drop range of 20-2×105Pa, and six flow configurations: first, second, and third constructal structures with optimized hydraulic diameters and non-optimized hydraulic diameter for each system size 10×10, 20×20, and 50×50, respectively. The numerical results show that the optimized structure of cooling plates could enhance heat transfer significantly and decrease pumping power dramatically compared with the traditional channels. The difference in thermal resistance performance between optimized and non-optimized structures was found to increase and manifests itself clearly as the system size increased. The channel configurations of the first and second constructs are competitive in non-optimized configurations, whereas the best architecture was the third construct across all working conditions in non-optimized configurations. © 2010 Elsevier Ltd.

Full Text

Duke Authors

Cited Authors

  • Cho, KH; Lee, J; Ahn, HS; Bejan, A; Kim, MH

Published Date

  • 2010

Published In

Volume / Issue

  • 53 / 19-20

Start / End Page

  • 3607 - 3614

International Standard Serial Number (ISSN)

  • 0017-9310

Digital Object Identifier (DOI)

  • 10.1016/j.ijheatmasstransfer.2010.03.027

Citation Source

  • SciVal