Isoform specificity among ankyrins. An amphipathic alpha-helix in the divergent regulatory domain of ankyrin-b interacts with the molecular co-chaperone Hdj1/Hsp40.

Journal Article (Journal Article)

Ankyrins-R, -B, and -G are a family of membrane-associated adaptors required for localization of structurally diverse proteins to specialized membrane domains, including axon initial segments, cardiomyocyte T-tubules, and epithelial cell lateral membranes. Ankyrins are often co-expressed in the same cells and, although structurally similar, have non-overlapping functions. We previously determined that the regulatory domain of ankyrin-B defines specificity between ankyrins B and G in cardiomyocytes. Here, we identify key residues on the surface of an amphipathic alpha-helix unique to the regulatory domain of ankyrin-B that are essential for the function of ankyrin-B in cardiomyocytes. Using circular dichroism, we determined that a peptide representing the predicted helix folds as a helix in solution. Alanine-scanning mutagenesis revealed that residues 1773, 1777, 1780, 1784, and 1788 located in a patch on one surface the helix are critical for ankyrin-B function in cardiomyocytes. In a parallel set of experiments we determined that the molecular co-chaperone human DnaJ homologue 1 (Hdj1)/Hsp40 interacts with the ankyrin-B regulatory domain. Moreover, interaction of Hdj1/Hsp40 with the regulatory domain was mapped by random mutagenesis to same surface of the alpha-helix that is required for ankyrin-B function. These results provide new insight into the molecular basis for specificity between ankyrin-based pathways by defining a key alpha-helix structure in the divergent regulatory domain of ankyrin-B as well as interaction of the helix with Hdj1/Hsp40, the first downstream target for ankyrin-B-specific function.

Full Text

Duke Authors

Cited Authors

  • Mohler, PJ; Hoffman, JA; Davis, JQ; Abdi, KM; Kim, C-R; Jones, SK; Davis, LH; Roberts, KF; Bennett, V

Published Date

  • June 11, 2004

Published In

Volume / Issue

  • 279 / 24

Start / End Page

  • 25798 - 25804

PubMed ID

  • 15075330

International Standard Serial Number (ISSN)

  • 0021-9258

Digital Object Identifier (DOI)

  • 10.1074/jbc.M401296200

Language

  • eng

Conference Location

  • United States