Design of coupled porphyrin chromophores with unusually large hyperpolarizabilities

Journal Article (Journal Article)

Figure Persented: A new series of push-pull porphyrin-based chromophores with unusually large static first hyperpolarizabilities are designed on the basis of coupled-perturbed Hartree-Fock and density functional calculations. The proper combination of critical building blocks, including a ruthenium(II) bisterpyridine complex, proquinoidal thiadiazoloquinoxaline, and (porphinato)zinc(II) units, gives rise to considerable predicted enhancements of the static nonlinear optical (NLO) response, computed to be as large as 11 300 × 10 -30 esu, 2 orders of magnitude larger than the benchmark [5-((4′-(dimethylamino)phenyl)ethynyl)-15-((4″-nitrophenyl)ethynyl) porphinato]zinc(II) chromophore. A two-state model was found to be useful for the qualitative description of the first hyperpolarizabilities in this class of NLO chromophores, which are predicted to have hyperpolarizabilities approaching the fundamental limit predicted to be attainable by empirical theoretical models. © 2012 American Chemical Society.

Full Text

Duke Authors

Cited Authors

  • Jiang, N; Zuber, G; Keinan, S; Nayak, A; Yang, W; Therien, MJ; Beratan, DN

Published Date

  • May 3, 2012

Published In

Volume / Issue

  • 116 / 17

Start / End Page

  • 9724 - 9733

Electronic International Standard Serial Number (EISSN)

  • 1932-7455

International Standard Serial Number (ISSN)

  • 1932-7447

Digital Object Identifier (DOI)

  • 10.1021/jp2115065

Citation Source

  • Scopus