The dual ErbB1/ErbB2 inhibitor, lapatinib (GW572016), cooperates with tamoxifen to inhibit both cell proliferation- and estrogen-dependent gene expression in antiestrogen-resistant breast cancer.

Published

Journal Article

Effective treatment of estrogen receptor (ER)-positive breast cancers with tamoxifen is often curtailed by the development of drug resistance. Antiestrogen-resistant breast cancers often show increased expression of the epidermal growth factor receptor family members, ErbB1 and ErbB2. Tamoxifen activates the cyclin-dependent kinase inhibitor, p27 to mediate G(1) arrest. ErbB2 or ErbB1 overexpression can abrogate tamoxifen sensitivity in breast cancer lines through both reduction in p27 levels and inhibition of its function. Here we show that the dual ErbB1/ErbB2 inhibitor, lapatinib (GW572016), can restore tamoxifen sensitivity in ER-positive, tamoxifen-resistant breast cancer models. Treatment of MCF-7(pr), T-47D, and ZR-75 cells with lapatinib or tamoxifen alone caused an incomplete cell cycle arrest. Treatment with both drugs led to a more rapid and profound cell cycle arrest in all three lines. Mitogen-activated protein kinase and protein kinase B were inhibited by lapatinib. The two drugs together caused a greater reduction of cyclin D1 and a greater p27 increase and cyclin E-cdk2 inhibition than observed with either drug alone. In addition to inhibiting mitogenic signaling and cell cycle progression, lapatinib inhibited estrogen-stimulated ER transcriptional activity and cooperated with tamoxifen to further reduce ER-dependent transcription. Lapatinib in combination with tamoxifen effectively inhibited the growth of tamoxifen-resistant ErbB2 overexpressing MCF-7 mammary tumor xenografts. These data provide strong preclinical data to support clinical trials of ErbB1/ErbB2 inhibitors in combination with tamoxifen in the treatment of human breast cancer.

Full Text

Duke Authors

Cited Authors

  • Chu, I; Blackwell, K; Chen, S; Slingerland, J

Published Date

  • January 1, 2005

Published In

Volume / Issue

  • 65 / 1

Start / End Page

  • 18 - 25

PubMed ID

  • 15665275

Pubmed Central ID

  • 15665275

International Standard Serial Number (ISSN)

  • 0008-5472

Language

  • eng

Conference Location

  • United States