Molecular basis of a novel adaptation to hypoxic-hypercapnia in a strictly fossorial mole.

Published online

Journal Article

BACKGROUND: Elevated blood O(2) affinity enhances survival at low O(2) pressures, and is perhaps the best known and most broadly accepted evolutionary adjustment of terrestrial vertebrates to environmental hypoxia. This phenotype arises by increasing the intrinsic O(2) affinity of the hemoglobin (Hb) molecule, by decreasing the intracellular concentration of allosteric effectors (e.g., 2,3-diphosphoglycerate; DPG), or by suppressing the sensitivity of Hb to these physiological cofactors. RESULTS: Here we report that strictly fossorial eastern moles (Scalopus aquaticus) have evolved a low O(2) affinity, DPG-insensitive Hb - contrary to expectations for a mammalian species that is adapted to the chronic hypoxia and hypercapnia of subterranean burrow systems. Molecular modelling indicates that this functional shift is principally attributable to a single charge altering amino acid substitution in the beta-type delta-globin chain (delta136Gly-->Glu) of this species that perturbs electrostatic interactions between the dimer subunits via formation of an intra-chain salt-bridge with delta82Lys. However, this replacement also abolishes key binding sites for the red blood cell effectors Cl-, lactate and DPG (the latter of which is virtually absent from the red cells of this species) at delta82Lys, thereby markedly reducing competition for carbamate formation (CO(2) binding) at the delta-chain N-termini. CONCLUSIONS: We propose this Hb phenotype illustrates a novel mechanism for adaptively elevating the CO(2) carrying capacity of eastern mole blood during burst tunnelling activities associated with subterranean habitation.

Full Text

Duke Authors

Cited Authors

  • Campbell, KL; Storz, JF; Signore, AV; Moriyama, H; Catania, KC; Payson, AP; Bonaventura, J; Stetefeld, J; Weber, RE

Published Date

  • July 16, 2010

Published In

Volume / Issue

  • 10 /

Start / End Page

  • 214 -

PubMed ID

  • 20637064

Electronic International Standard Serial Number (EISSN)

  • 1471-2148

Digital Object Identifier (DOI)

  • 10.1186/1471-2148-10-214

Language

  • eng

Conference Location

  • England